-
CiteScore
-
Impact Factor
Volume 1, Issue 2, ICCK Journal of Applied Mathematics
Volume 1, Issue 2, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Journal of Applied Mathematics, Volume 1, Issue 2, 2025: 66-85

Open Access | Research Article | 26 August 2025
Modified Hiemenz Stagnation Point Flow of Second Grade Nano Fluid
1 Department of Mathematics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
2 Department of Mechanical Engineering, College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
3 School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
4 College of Business Administration, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
* Corresponding Author: Shahid Ali, [email protected]
Received: 28 May 2025, Accepted: 21 June 2025, Published: 26 August 2025  
Abstract
Three-dimensional (3D) flow of a viscoelastic fluid in the neighborhood of new family of modified stagnation point depending on shear to strain ratio over a flat surface is numerically investigated. Similarity equations are obtained from the fundamental conservation laws of mass, momentum, energy and nanoparticle concentration. The resulting set of nonlinear equations are solved numerically using an implicit finite difference scheme known as Keller-Box Method. A comparative analysis for modified Hiemenz flow, non-axisymmetric stagnation point and axisymmetric stagnation point flow is carried out. Velocity, temperature and concentration profiles, skin frictions local Nusselt and Sherwood numbers are graphically presented and their variation with involved parameters is discussed in detail. We found that velocity concentration and temperature profiles increase by an increasing the values of We.

Graphical Abstract
Modified Hiemenz Stagnation Point Flow of Second Grade Nano Fluid

Keywords
modified hiemenz flow
second grade fluid
numerical solution
nanofluid
Keller-Box method

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Hiemenz, K. (1911). Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden kreiszylinder. Gottingen dissertation. Dingler's polytech. J, 326, 311.
    [Google Scholar]
  2. Ariel, P. D. (1995). A numerical algorithm for computing the stagnation point flow of a second grade fluid with/without suction. Journal of Computational and Applied Mathematics, 59(1), 9-24.
    [CrossRef]   [Google Scholar]
  3. Ariel, P. D. (2001). Axisymmetric flow of a second grade fluid past a stretching sheet. International Journal of Engineering Science, 39(5), 529-553.
    [CrossRef]   [Google Scholar]
  4. Ariel, P. D. (2002). On extra boundary condition in the stagnation point flow of a second grade fluid. International Journal of Engineering Science, 40(2), 145-162.
    [CrossRef]   [Google Scholar]
  5. Attia, H. A. (2003). Homann magnetic flow and heat transfer with uniform suction or injection. Canadian Journal of Physics, 81(10), 1223-1230.
    [CrossRef]   [Google Scholar]
  6. Barış, S., & Dokuz, M. S. (2006). Three-dimensional stagnation point flow of a second grade fluid towards a moving plate. International Journal of Engineering Science, 44(1-2), 49-58.
    [CrossRef]   [Google Scholar]
  7. Dunn, J. E., & Fosdick, R. L. (1974). Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade. Archive for Rational mechanics and Analysis, 56(3), 191-252.
    [CrossRef]   [Google Scholar]
  8. Gorla, R. S. R. (1978). Nonsimilar axisymmetric stagnation flow on a moving cylinder. International Journal of Engineering Science, 16(6), 397-400.
    [CrossRef]   [Google Scholar]
  9. Hayat, T., Anwar, M. S., Farooq, M., & Alsaedi, A. (2014). MHD stagnation point flow of second grade fluid over a stretching cylinder with heat and mass transfer. International Journal of Nonlinear Sciences and Numerical Simulation, 15(6), 365-376.
    [CrossRef]   [Google Scholar]
  10. Ahmad, M., Ahmad, I., & Sajid, M. (2016). Heat transfer analysis in an axisymmetric stagnation-point flow of second grade fluid over a lubricated surface. American Journal of Heat and Mass Transfer, 3(1), 1-14.
    [Google Scholar]
  11. Homann, F. (1936). Einfluß großer zähigkeit bei strömung um zylinder. Forschung auf dem Gebiet des Ingenieurwesens A, 7(1), 1-10.
    [CrossRef]   [Google Scholar]
  12. Ishihara, Y., & Paullet, J. E. (2008). Dual solutions for axisymmetric stagnation point flow over a lubricated surface. Communications in Applied Analysis, 12(3), 289-296.
    [Google Scholar]
  13. Khan, M., El Shafey, A. M., Salahuddin, T., & Khan, F. (2020). Chemically Homann stagnation point flow of Carreau fluid. Physica A: Statistical Mechanics and its Applications, 551, 124066.
    [CrossRef]   [Google Scholar]
  14. Khan, M., Sarfraz, M., Ahmed, J., Ahmad, L., & Fetecau, C. (2020). Non-axisymmetric Homann stagnation-point flow of Walter’s B nanofluid over a cylindrical disk. Applied Mathematics and Mechanics, 41(5), 725-740.
    [CrossRef]   [Google Scholar]
  15. Labropulu, F., & Li, D. (2008). Stagnation-point flow of a second-grade fluid with slip. International Journal of Non-Linear Mechanics, 43(9), 941-947.
    [CrossRef]   [Google Scholar]
  16. Libby, P. A. (1962). The homogeneous boundary layer at an axisymmetric stagnation point with large rates of injection. Journal of the Aerospace Sciences, 29(1), 48-60.
    [CrossRef]   [Google Scholar]
  17. Lin, T. C., & Schaaf, S. A. (1951). Effect of slip on flow near a stagnation point and in a boundary layer (No. NACA-TN-2568).
    [Google Scholar]
  18. Mahabaleshwar, U. S., Nagaraju, K. R., Nadagoud, M. N., Bennacer, R., & Baleanu, D. (2020). An MHD viscous liquid stagnation point flow and heat transfer with thermal radiation and transpiration. Thermal Science and Engineering Progress, 16, 100379.
    [CrossRef]   [Google Scholar]
  19. Nadeem, S., Ishtiaq, B., Almutairi, S., & Ghazwani, H. A. (2022). Impact of Cattaneo–Christov double diffusion on 3d stagnation point axisymmetric flow of second-grade nanofluid towards a riga plate. International Journal of Modern Physics B, 36(29), 2250205.
    [CrossRef]   [Google Scholar]
  20. Nawaz, M., Alsaedi, A., Hayat, T., & Alhothauli, M. S. (2013). Dufour and Soret effects in an axisymmetric stagnation point flow of second grade fluid with newtonian heating. Journal of Mechanics, 29(1), 27-34.
    [CrossRef]   [Google Scholar]
  21. Rahimi, A. B., & Saleh, R. (2007). Axisymmetric Stagnation—Point Flow and Heat Transfer of a Viscous Fluid on a Rotating Cylinder With Time-Dependent Angular Velocity and Uniform Transpiration. Journal of Fluids Engineering, 129(1), 106-115.
    [CrossRef]   [Google Scholar]
  22. Rott, N. (1956). Unsteady viscous flow in the vicinity of a stagnation point. Quarterly of Applied Mathematics, 13(4), 444-451.
    [Google Scholar]
  23. Sahoo, B., & Labropulu, F. (2012). Steady Homann flow and heat transfer of an electrically conducting second grade fluid. Computers & Mathematics with Applications, 63(7), 1244-1255.
    [CrossRef]   [Google Scholar]
  24. Saif, R. S., Hayat, T., Ellahi, R., Muhammad, T., & Alsaedi, A. (2017). Stagnation-point flow of second grade nanofluid towards a nonlinear stretching surface with variable thickness. Results in physics, 7, 2821-2830.
    [CrossRef]   [Google Scholar]
  25. Sajid, M., Mahmood, K., & Abbas, Z. (2012). Axisymmetric stagnation-point flow with a general slip boundary condition over a lubricated surface. Chinese Physics Letters, 29(2), 024702.
    [CrossRef]   [Google Scholar]
  26. Saleh, R., & Rahimi, A. B. (2004). Axisymmetric stagnation-point flow and heat transfer of a viscous fluid on a moving cylinder with time-dependent axial velocity and uniform transpiration. Journal of Fluids Engineering, 126(6), 997-1005.
    [CrossRef]   [Google Scholar]
  27. Santra, B., Dandapat, B. S., & Andersson, H. I. (2007). Axisymmetric stagnation-point flow over a lubricated surface. Acta Mechanica, 194(1), 1-10.
    [CrossRef]   [Google Scholar]
  28. Takhar, H. S., Chamkha, A. J., & Nath, G. (1999). Unsteady axisymmetric stagnation-point flow of a viscous fluid on a cylinder. International Journal of Engineering Science, 37(15), 1943-1957.
    [CrossRef]   [Google Scholar]
  29. Wang, C. Y. (1973). Axisymmetric stagnation flow towards a moving plate. AIChE Journal, 19(5), 1080-1081.
    [CrossRef]   [Google Scholar]
  30. Weidman, P. (2014). Axisymmetric stagnation-point flow on a spiraling disk. Physics of Fluids, 26(7).
    [CrossRef]   [Google Scholar]
  31. Weidman, P. D., & Mahalingam, S. (1997). Axisymmetric stagnation-point flow impinging on a transversely oscillating plate with suction. Journal of Engineering Mathematics, 31(2), 305-318.
    [CrossRef]   [Google Scholar]
  32. Weidman, P. D. (2021). Three‐dimensional Hiemenz stagnation‐point flows. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 101(2), e201900319.
    [CrossRef]   [Google Scholar]
  33. Zhong, Y., & Fang, T. (2011). Unsteady stagnation-point flow over a plate moving along the direction of flow impingement. International journal of heat and mass transfer, 54(15-16), 3103-3108.
    [CrossRef]   [Google Scholar]
  34. Ziabakhsh, Z., Domairry, G., & Ghazizadeh, H. R. (2009). Analytical solution of the stagnation-point flow in a porous medium by using the homotopy analysis method. Journal of the Taiwan Institute of Chemical Engineers, 40(1), 91-97.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Abbasi, A. K., Ali, A. B. M., Naseer, M., Farooq, W., Ali, S., & Rafiq, M. (2025). Modified Hiemenz Stagnation Point Flow of Second Grade Nano Fluid. ICCK Journal of Applied Mathematics, 1(2), 66–85. https://doi.org/10.62762/JAM.2025.411313

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 209
PDF Downloads: 78

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
ICCK Journal of Applied Mathematics

ICCK Journal of Applied Mathematics

ISSN: 3068-5656 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/