-
CiteScore
-
Impact Factor
Volume 1, Issue 1, ICCK Journal of Applied Mathematics
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Journal of Applied Mathematics, Volume 1, Issue 1, 2025: 32-40

Open Access | Research Article | 27 June 2025
Heat Transfer and Modified Darcy's Principle in Peristaltic Motion with Hartmann Boundary Layer
1 Department of Mathematics and Statistics, Riphah International University I-14, Islamabad, 44000, Pakistan
2 Department of Mathematics, National University of Modern Languages (NUML), Islamabad 44000, Pakistan
* Corresponding Author: Shahid Farooq, [email protected]
Received: 09 May 2025, Accepted: 26 May 2025, Published: 27 June 2025  
Abstract
This research contains the Hartmann boundary layer effectiveness in peristaltic flow of non-Newtonian viscoelastic fluids through asymmetric channel walls. Due to the Hartmann boundary layer, Hartmann number is considered very large. Porosity effects are included in view of modified Darcy's principle. Energy equation is modelled in the presence of viscous dissipation and Joule heating features. No slip condition for fluid velocity is considered at both channel walls. Large wavelength and dominating viscous forces implementation reduce the PDEs into ODEs. The resulting system of ODEs approximate solution is attained through perturbation and matching techniques for large magnetic field effects. Lastly the obtained approximate analytic solution is utilized to study the varying behaviour of velocity and temperature profiles against involved sundry parameters through graphs.

Graphical Abstract
Heat Transfer and Modified Darcy's Principle in Peristaltic Motion with Hartmann Boundary Layer

Keywords
modified darcy law
eyring-powel liquid
heat generation absorption
natural and force convection
compliant wall properties

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Bhatti, M. M., Zeeshan, A., Ijaz, N., & Ellahi, R. (2017). Heat transfer and inclined magnetic field analysis on peristaltically induced motion of small particles. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(8), 3259–3267.
    [CrossRef]   [Google Scholar]
  2. Khan, L. A., Raza, M., Mir, N. A., & Ellahi, R. (2020). Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. Journal of Thermal Analysis and Calorimetry, 140(2), 879–890.
    [CrossRef]   [Google Scholar]
  3. Ali, A., Shah, Z., Mumraiz, S., Kumam, P., & Awais, M. (2019). Entropy generation on MHD peristaltic flow of Cu-water nanofluid with slip conditions. Heat Transfer—Asian Research, 48(8), 4301–4319.
    [CrossRef]   [Google Scholar]
  4. Sadaf, H., & Nadeem, S. (2020). Fluid flow analysis of cilia beating in a curved channel in the presence of magnetic field and heat transfer. Canadian Journal of Physics, 98(2), 191-197.
    [CrossRef]   [Google Scholar]
  5. Ali, A., Awais, M., Zubaidi, A., Saleem, S., & Marwat, D. N. K. (2022). Hartmann boundary layer in peristaltic flow for viscoelastic fluid: Existence. Ain Shams Engineering Journal, 13(2), 101555.
    [CrossRef]   [Google Scholar]
  6. Akbar, N. S., & Butt, A. W. (2015). Heat transfer analysis of peristaltic flow in a curved channel. International Journal of Heat and Mass Transfer, 85, 762-767.
    [CrossRef]   [Google Scholar]
  7. Shapiro, A. H., Jaffrin, M. Y., & Weinberg, S. L. (1969). Peristaltic pumping with long wavelengths at low Reynolds number. Journal of Fluid Mechanics, 37(4), 799–825.
    [CrossRef]   [Google Scholar]
  8. Fung, Y. C., & Yin, C. S. (1968). Peristaltic transport. ASME Journal of Applied Mechanics, 35(4), 699–1675.
    [CrossRef]   [Google Scholar]
  9. Yin, F., & Fung, Y. C. (1969). Peristaltic waves in circular cylindrical tubes. ASME Journal of Applied Mechanics, 36(4), 579–587.
    [CrossRef]   [Google Scholar]
  10. Hussain, Z., Khaled, K., Sharif, U., Abbasi, A., Khan, S. U., Farooq, W., ... & Malik, M. Y. (2022). A mathematical model for radiative peristaltic flow of Jeffrey fluid in curved channel with Joule heating and different walls: Shooting technique analysis. Ain Shams Engineering Journal, 13(5), 101685.
    [CrossRef]   [Google Scholar]
  11. Ranjit, N. K., Shit, G. C., & Tripathi, D. (2019). Entropy generation and Joule heating of two layered electroosmotic flow in the peristaltically induced micro-channel. International Journal of Mechanical Sciences, 153–154, 430–444.
    [CrossRef]   [Google Scholar]
  12. Priam, S. S., & Nasrin, R. (2022). Numerical appraisal of time-dependent peristaltic duct flow using Casson fluid. International Journal of Mechanical Sciences, 233, 107676.
    [CrossRef]   [Google Scholar]
  13. Mallick, B., & Misra, J. C. (2018). Peristaltic flow of Eyring-Powell nanofluid under the action of an electromagnetic field. Engineering Science and Technology, an International Journal, 22(1), 266–281.
    [CrossRef]   [Google Scholar]
  14. Yasmeen, S., Asghar, S., Anjum, H. J., & Ehsan, T. (2019). Analysis of Hartmann boundary layer peristaltic flow of Jeffrey fluid: Quantitative and qualitative approaches. Communications in Nonlinear Science and Numerical Simulation, 76, 51–65.
    [CrossRef]   [Google Scholar]
  15. Rafiq, M., Yasmin, H., Hayat, T., & Alsaadi, F. (2019). Effect of Hall and ion-slip on the peristaltic transport of nanofluid: A biomedical application. Chinese Journal of Physics, 60, 208–227.
    [CrossRef]   [Google Scholar]
  16. Vajravelu, K., Radhakrishnamacharya, G., & Radhakrishnamurty, V. (2007). Peristaltic flow and heat transfer in a vertical porous annulus, with long wave approximation. International Journal of Non-Linear Mechanics, 42(5), 754–759.
    [CrossRef]   [Google Scholar]
  17. Riaz, A., Khan, S. U. D., Zeeshan, A., Khan, S. U., Hassan, M., & Muhammad, T. (2021). Thermal analysis of peristaltic flow of nanosized particles within a curved channel with second-order partial slip and porous medium. Journal of Thermal Analysis and Calorimetry, 143(3), 1997–2009.
    [CrossRef]   [Google Scholar]
  18. Hayat, T., Javed, M., & Hendi, A. A. (2011). Peristaltic transport of viscous fluid in a curved channel with compliant walls. International Journal of Heat and Mass Transfer, 54(7–8), 1615–1621.
    [CrossRef]   [Google Scholar]
  19. Hayat, T., Quratulain, Alsaadi, F., Rafiq, M., & Ahmad, B. (2017). On effects of thermal radiation and radial magnetic field for peristalsis of Sutterby liquid in a curved channel with wall properties. Chinese Journal of Physics, 55(5), 2005–2024.
    [CrossRef]   [Google Scholar]
  20. Hayat, T., Farooq, S., Ahmad, B., & Alsaedi, A. (2016). Characteristics of convective heat transfer in the MHD peristalsis of Carreau fluid with Joule heating. AIP Advances, 6(4), 045302.
    [CrossRef]   [Google Scholar]
  21. Shamshuddin, M. D., Khan, S. U., Bég, O. A., & Bég, T. A. (2020). Hall current, viscous and Joule heating effects on steady radiative 2-D magneto-power-law polymer dynamics from an exponentially stretching sheet with power-law slip velocity: A numerical study. Thermal Science and Engineering Progress, 20, 100732.
    [CrossRef]   [Google Scholar]
  22. Hayat, T., Abbasi, F. M., Maryem, A., & Monaquel, S. (2014). Slip and Joule heating effects in mixed convection peristaltic transport of nanofluid with Soret and Dufour effects. Journal of Molecular Liquids, 194, 93–99.
    [CrossRef]   [Google Scholar]
  23. Gireesha, B. J., Srinivasa, C. T., Shashikumar, N. S., Macha, M., Singh, J. K., & Mahanthesh, B. (2019). Entropy generation and heat transport analysis of Casson fluid flow with viscous and Joule heating in an inclined porous microchannel. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 233(4), 1173–1184.
    [Google Scholar]
  24. Sucharitha, G., Lakshminarayana, P., & Sandeep, N. (2017). Joule heating and wall flexibility effects on the peristaltic flow of magnetohydrodynamic nanofluid. International Journal of Mechanical Sciences, 131, 52–62.
    [CrossRef]   [Google Scholar]
  25. Abbasi, A., Mabood, F., Farooq, W., & Khan, S. U. (2021). Radiation and Joule heating effects on electroosmosis-modulated peristaltic flow of Prandtl nanofluid via tapered channel. International Communications in Heat and Mass Transfer, 123, 105183.
    [CrossRef]   [Google Scholar]
  26. Usman, M., Khan, M. I., Shah, F., Khan, S. U., Ghaffari, A., & Chu, Y. M. (2022). Heat and mass transfer analysis for bioconvective flow of Eyring Powell nanofluid over a Riga surface with nonlinear thermal features. Numerical Methods for Partial Differential Equations, 38(4), 777–793.
    [CrossRef]   [Google Scholar]
  27. Kodi, R., Ravuri, M. R., Veeranna, V., Khan, M. I., Abdullaev, S., & Tamam, N. (2023). Hall current and thermal radiation effects of 3D rotating hybrid nanofluid reactive flow via stretched plate with internal heat absorption. Results in Physics, 53, 106915.
    [CrossRef]   [Google Scholar]
  28. Rubbab, Q., Nazeer, M., Ahmad, F., Chu, Y. M., Khan, M. I., & Kadry, S. (2021). Numerical simulation of advection–diffusion equation with Caputo-Fabrizio time fractional derivative in cylindrical domains: Applications of pseudo-spectral collocation method. Alexandria Engineering Journal, 60(1), 1731–1738.
    [CrossRef]   [Google Scholar]
  29. Rehman, M., Noreen, S., Haider, A., & Azam, H. (2015). Effect of heat sink/source on peristaltic flow of Jeffrey fluid through a symmetric channel. Alexandria Engineering Journal, 54(3), 733-743.
    [CrossRef]   [Google Scholar]
  30. Li, Y. X., Alqsair, U. F., Ramesh, K., Khan, S. U., & Khan, M. I. (2021). Nonlinear heat source/sink and activation energy assessment in double diffusion flow of micropolar (non-Newtonian) nanofluid with convective conditions. Arabian Journal for Science and Engineering, 1-8.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Farooq, S., & Sana, A. (2025). Heat Transfer and Modified Darcy’s Principle in Peristaltic Motion with Hartmann Boundary Layer. ICCK Journal of Applied Mathematics, 1(1), 32–40. https://doi.org/10.62762/JAM.2025.463651

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 187
PDF Downloads: 38

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
ICCK Journal of Applied Mathematics

ICCK Journal of Applied Mathematics

ISSN: 3068-5656 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/