-
CiteScore
-
Impact Factor
Volume 1, Issue 1, ICCK Transactions on Electric Power Networks and Systems
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Electric Power Networks and Systems, Volume 1, Issue 1, 2025: 17-25

Research Article | 19 October 2025
Simulation of Thermal Operation Modes of XLPE Pulse Cable
1 Higher School of High Voltage Engineering, Peter the Great St.Petersburg Polytechnic University (SPbPU), 195251, St.Petersburg, Russia
* Corresponding Author: Oleg Emelyanov, [email protected]
Received: 04 August 2025, Accepted: 14 September 2025, Published: 19 October 2025  
Abstract
The results of numerical simulation of temperature modes of cross-linked polyethylene (XLPE) cable under transient states for International Thermonuclear Experimental Reactor (ITER) application are presented. The pulsed electric current load in the external circuit rapidly changes with the maximum values of 1.5 kA during tens of seconds decay with a period of 1200 s that corresponds to operation modes of the ITER fusion reactor. The core temperature achieves periodic steady-state at 20000 s, which is consistent with 4-5 cable thermal constant (~ 4500 s). The numerical results obtained reveal that the skin effect plays an insignificant role on core temperature dynamics. Multiphysics model links electric current with heat generation in cables with respect to electromagnetic effects and measured temperature dependencies of electro and thermophysical properties of the cable’s XLPE insulation.

Graphical Abstract
Simulation of Thermal Operation Modes of XLPE Pulse Cable

Keywords
pulse cable
skin effect
temperature transient state
thermophysical property of cross-linked polyethylene (XLPE)

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Sonara, J., Beltran, D., Pintea, B., Hourtoule, J., Benfatto, I., Kim, S. H., ... & Lee, C. J. (2015). An overview of the ITER cabling network and cable database management. Fusion Engineering and Design, 96, 957-960.
    [CrossRef]   [Google Scholar]
  2. Gung, C. Y., Ilin, Y., Dolgetta, N., Chen, Y., Bauer, P., Jong, C., \ldots, & Ding, K. (2012). Progress in design, analysis, and manufacturing studies of the ITER feeders. IEEE Transactions on Applied Superconductivity, 22(3), 4800804-4800804.
    [CrossRef]   [Google Scholar]
  3. Doronin, M., Greshnyakov, G., & Korovkin, N. (2018). Modes of operation and design features of pulse cables for the ITER project. In MATEC Web of Conferences (Vol. 245, p. 13001). EDP Sciences.
    [CrossRef]   [Google Scholar]
  4. IEEE SA. (n.d.). IEEE Standards Association. IEEE Standards Association. Retrieved from https://standards.ieee.org/ieee/400/7618/
    [Google Scholar]
  5. Finite element analysis for cable rating calculations. (2025, May 26). Online Library for Electrical Power Systems Publications | eCIGRE. Retrieved from https://www.e-cigre.org/publications/detail/963-finite-element-analysis-for-cable-rating-calculations.html
    [Google Scholar]
  6. IEC 60853-1:1985/Amd2:2008. (n.d.). IEC WebstoreIEC. Retrieved from https://webstore.iec.ch/en/publication/3708
    [Google Scholar]
  7. IEC TR 62095:2003. (n.d.). IEC WebstoreIEC. Retrieved from https://webstore.iec.ch/en/publication/6455
    [Google Scholar]
  8. IEC 60287-1-1:2023. (n.d.). IEC WebstoreIEC. Retrieved from https://webstore.iec.ch/en/publication/68118
    [Google Scholar]
  9. IEC 60287-2-1:2023. (n.d.). IEC WebstoreIEC. Retrieved from https://webstore.iec.ch/en/publication/68134
    [Google Scholar]
  10. De Leon, F., & Anders, G. J. (2008). Effects of backfilling on cable ampacity analyzed with the finite element method. IEEE Transactions on Power Delivery, 23(2), 537-543.
    [CrossRef]   [Google Scholar]
  11. Dubitsky, S., Greshnyakov, G., & Korovkin, N. (2016, April). Comparison of finite element analysis to IEC-60287 for predicting underground cable ampacity. In 2016 IEEE International Energy Conference (ENERGYCON) (pp. 1-6). IEEE.
    [CrossRef]   [Google Scholar]
  12. Wang, P. Y., Ma, H., Liu, G., Han, Z. Z., Guo, D. M., Xu, T., & Kang, L. Y. (2019). Dynamic thermal analysis of high-voltage power cable insulation for cable dynamic thermal rating. IEEE Access, 7, 56095-56106.
    [CrossRef]   [Google Scholar]
  13. Osman, G. F., Elsharkawy, T. M., & Salem, W. A. (2021, December). Thermal analysis of underground distribution cables under dynamic loading in the presence of harmonic load currents. In 2021 22nd International Middle East Power Systems Conference (MEPCON) (pp. 319-325). IEEE.
    [CrossRef]   [Google Scholar]
  14. da Silva, M. V., de Araújo, O. M., de Oliveira, D. F., & Lopes, R. T. (2024). Volumetric power density distribution in low voltage cables with Maxwell equations and FEM simulations. IEEE Transactions on Dielectrics and Electrical Insulation, 31(4), 2235-2241.
    [CrossRef]   [Google Scholar]
  15. Greshnyakov, G. V., Egupov, A. A., Dubitsky, S. D., & Korovkin, N. V. (2022, January). Coaxial XPLE-Insulated Cable for Current Pulse Application: Design, Sizing, and Parameters. In 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus) (pp. 1180-1184). IEEE.
    [CrossRef]   [Google Scholar]
  16. Mamaev, K. M., Greshnyakov, G. V., Dubitsky, S. D., Chesnokov, E. A., & Lebedeva, A. A. (2023, November). Transient thermal analysis of coaxial pulse power cable. In 2023 Seminar on Industrial Electronic Devices and Systems (IEDS) (pp. 167-171). IEEE.
    [CrossRef]   [Google Scholar]
  17. Morgan, V. T. (2002). The thermal conductivity of crosslinked polyethylene insulation in aerial bundled cables. IEEE Transactions on Electrical Insulation, 26(6), 1153-1158.
    [CrossRef]   [Google Scholar]
  18. Lee, K. Y., Yang, J. S., Choi, Y. S., & Park, D. H. (2006, June). Specific heat and thermal conductivity measurement of XLPE insulator and semiconducting materials. In 2006 IEEE 8th International Conference on Properties & Applications of Dielectric Materials (pp. 805-809). IEEE.
    [CrossRef]   [Google Scholar]
  19. Liu, Y., Sun, J., Chen, S., Sha, J., & Yang, J. (2022). Thermophysical properties of cross-linked polyethylene during thermal aging. Thermochimica Acta, 713, 179231.
    [CrossRef]   [Google Scholar]
  20. IEC 60949:1988. (2028, June 30). IEC WebstoreIEC. Retrieved from https://webstore.iec.ch/en/publication/4016
    [Google Scholar]

Cite This Article
APA Style
Chesnokov, E., Feklistov, E., Greshnyakov, G., & Emelyanov, O. (2025). Simulation of Thermal Operation Modes of XLPE Pulse Cable. ICCK Transactions on Electric Power Networks and Systems, 1(1), 17–25. https://doi.org/10.62762/TEPNS.2025.127082

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 108
PDF Downloads: 45

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
Institute of Central Computation and Knowledge (ICCK) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ICCK Transactions on Electric Power Networks and Systems

ICCK Transactions on Electric Power Networks and Systems

ISSN: pending (Online) | ISSN: pending (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/