-
CiteScore
-
Impact Factor
Volume 2, Issue 3, ICCK Transactions on Emerging Topics in Artificial Intelligence
Volume 2, Issue 3, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Emerging Topics in Artificial Intelligence, Volume 2, Issue 3, 2025: 148-156

Open Access | Review Article | 27 August 2025
Advances in Artificial Intelligence-Based Depression Diagnosis: A Systematic Review
1 Xinjiang Hetian College, Xinjiang 848000, China
2 Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
* Corresponding Author: Jiaqian Wu, [email protected]
Received: 22 May 2025, Accepted: 18 July 2025, Published: 27 August 2025  
Abstract
This study systematically reviews the current status and recent advances in intelligent depression detection, aiming to provide insights for applying artificial intelligence in mental health. Using a systematic review approach, we analyze detection methods based on multiple data types including voice, facial expressions, body signals, and social media texts, while examining how algorithms have evolved from traditional machine learning to deep learning. Results show that AI technology has clear benefits in improving detection accuracy, reducing costs, and enabling early warning systems. Current research still faces important challenges in data collection, technical reliability, clinical use, and privacy concerns. Future work should focus on combining knowledge from different fields, implementing systems in clinical practice, and developing standards for wider adoption.

Keywords
depression
artificial intelligence
multimodal features
deep learning
intelligent detection

Data Availability Statement
Not applicable.

Funding
This work was supported by the Key Project of Natural Science Foundation of Xinjiang Hetian College under Grant 2025ZR002.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Yang, C. Y., & Chen, Y. Z. (2024). Support vector machine classification of patients with depression based on resting-state electroencephalography. Asian Biomedicine: Research, Reviews and News, 18(5), 212-223.
    [CrossRef]   [Google Scholar]
  2. Su, C., Xu, Z., Pathak, J., & Wang, F. (2020). Deep learning in mental health outcome research: a scoping review. Translational psychiatry, 10(1), 116.
    [CrossRef]   [Google Scholar]
  3. World Health Organization. (2022). World mental health report: Transforming mental health for all. WHO Press.
    [Google Scholar]
  4. Santomauro, D. F., Herrera, A. M. M., Shadid, J., Zheng, P., Ashbaugh, C., Pigott, D. M., ... & Ferrari, A. J. (2021). Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. The Lancet, 398(10312), 1700-1712.
    [CrossRef]   [Google Scholar]
  5. Wang, J., Zhao, Z., Yang, J., Wang, L., Zhang, M., & Zhou, M. (2024). The Association Between Depression and All-Cause, Cause-Specific Mortality in the Chinese Population—China, 2010–2022. China CDC Weekly, 6(40), 1022.
    [CrossRef]   [Google Scholar]
  6. The Lancet Psychiatry. (2024). Global burden of disease 2021: Mental health messages. The Lancet Psychiatry, 11(8), 573.
    [CrossRef]   [Google Scholar]
  7. Chinese Medical Association, Chinese Medical Association Publishing House, & Chinese Medical Association General Practice Branch. (2021). Guidelines for the diagnosis and treatment of depression in primary care (2021). Chinese Journal of General Practitioners, 20(12), 1101–1116.
    [CrossRef]   [Google Scholar]
  8. Torous, J., Myrick, K. J., Rauseo-Ricupero, N., & Firth, J. (2020). Digital mental health and COVID-19: using technology today to accelerate the curve on access and quality tomorrow. JMIR mental health, 7(3), e18848.
    [CrossRef]   [Google Scholar]
  9. Sadeghi, M., Richer, R., Egger, B., Schindler-Gmelch, L., Rupp, L. H., Rahimi, F., ... & Eskofier, B. M. (2024). Harnessing multimodal approaches for depression detection using large language models and facial expressions. npj Mental Health Research, 3(1), 66.
    [CrossRef]   [Google Scholar]
  10. Low, D. M., Rumker, L., Talkar, T., Torous, J., Cecchi, G., & Ghosh, S. S. (2020). Natural language processing reveals vulnerable mental health support groups and heightened health anxiety on reddit during covid-19: Observational study. Journal of medical Internet research, 22(10), e22635.
    [CrossRef]   [Google Scholar]
  11. De Choudhury, M., Gamon, M., Counts, S., & Horvitz, E. (2013). Predicting depression via social media. In Proceedings of the international AAAI conference on web and social media (Vol. 7, No. 1, pp. 128-137).
    [CrossRef]   [Google Scholar]
  12. Ringeval, F., Schuller, B., Valstar, M., Cummins, N., Cowie, R., Tavabi, L., ... & Pantic, M. (2019, October). AVEC 2019 workshop and challenge: state-of-mind, detecting depression with AI, and cross-cultural affect recognition. In Proceedings of the 9th International on Audio/visual Emotion Challenge and Workshop (pp. 3-12).
    [CrossRef]   [Google Scholar]
  13. Guntuku, S. C., Sherman, G., Stokes, D. C., Agarwal, A. K., Seltzer, E., Merchant, R. M., & Ungar, L. H. (2020). Tracking mental health and symptom mentions on Twitter during COVID-19. Journal of general internal medicine, 35(9), 2798-2800.
    [CrossRef]   [Google Scholar]
  14. Cai, H., Han, J., Chen, Y., Sha, X., Wang, Z., Hu, B., ... & Gutknecht, J. (2018). A pervasive approach to EEG‐based depression detection. complexity, 2018(1), 5238028.
    [CrossRef]   [Google Scholar]
  15. Jacobson, N. C., Weingarden, H., & Wilhelm, S. (2019). Digital biomarkers of mood disorders and symptom change. NPJ digital medicine, 2(1), 3.
    [CrossRef]   [Google Scholar]
  16. Guntuku, S. C., Yaden, D. B., Kern, M. L., Ungar, L. H., & Eichstaedt, J. C. (2017). Detecting depression and mental illness on social media: an integrative review. Current Opinion in Behavioral Sciences, 18, 43-49.
    [CrossRef]   [Google Scholar]
  17. Tadesse, M. M., Lin, H., Xu, B., & Yang, L. (2019). Detection of depression-related posts in reddit social media forum. Ieee Access, 7, 44883-44893.
    [CrossRef]   [Google Scholar]
  18. Yang, L., Jiang, D., He, L., Pei, E., Oveneke, M. C., & Sahli, H. (2016, October). Decision tree based depression classification from audio video and language information. In Proceedings of the 6th international workshop on audio/visual emotion challenge (pp. 89-96).
    [CrossRef]   [Google Scholar]
  19. Cummins, N., Scherer, S., Krajewski, J., Schnieder, S., Epps, J., & Quatieri, T. F. (2015). A review of depression and suicide risk assessment using speech analysis. Speech communication, 71, 10-49.
    [CrossRef]   [Google Scholar]
  20. Shatte, A. B., Hutchinson, D. M., & Teague, S. J. (2019). Machine learning in mental health: a scoping review of methods and applications. Psychological medicine, 49(9), 1426-1448.
    [CrossRef]   [Google Scholar]
  21. Knyazev, B., Taylor, G. W., & Amer, M. (2019). Understanding attention and generalization in graph neural networks. Advances in neural information processing systems, 32.
    [Google Scholar]
  22. Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T. H., & Faubert, J. (2019). Deep learning-based electroencephalography analysis: a systematic review. Journal of neural engineering, 16(5), 051001.
    [CrossRef]   [Google Scholar]
  23. Kingphai, K., & Moshfeghi, Y. (2024). Mental workload assessment using deep learning models from eeg signals: A systematic review. IEEE Transactions on Cognitive and Developmental Systems.
    [CrossRef]   [Google Scholar]
  24. Larson, D. B., Magnus, D. C., Lungren, M. P., Shah, N. H., & Langlotz, C. P. (2020). Ethics of using and sharing clinical imaging data for artificial intelligence: a proposed framework. Radiology, 295(3), 675-682.
    [CrossRef]   [Google Scholar]
  25. Graham, S., Depp, C., Lee, E. E., Nebeker, C., Tu, X., Kim, H. C., & Jeste, D. V. (2019). Artificial intelligence for mental health and mental illnesses: an overview. Current psychiatry reports, 21(11), 116.
    [CrossRef]   [Google Scholar]
  26. Huckvale, K., Venkatesh, S., & Christensen, H. (2019). Toward clinical digital phenotyping: a timely opportunity to consider purpose, quality, and safety. NPJ digital medicine, 2(1), 88.
    [CrossRef]   [Google Scholar]
  27. Lee, Y., Ragguett, R. M., Mansur, R. B., Boutilier, J. J., Rosenblat, J. D., Trevizol, A., ... & McIntyre, R. S. (2018). Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review. Journal of affective disorders, 241, 519-532.
    [CrossRef]   [Google Scholar]
  28. Sau, A., & Bhakta, I. (2017). Artificial neural network (ANN) model to predict depression among geriatric population at a slum in Kolkata, India. Journal of clinical and diagnostic research: JCDR, 11(5), VC01.
    [CrossRef]   [Google Scholar]
  29. De Choudhury, M., Counts, S., & Horvitz, E. (2013, May). Social media as a measurement tool of depression in populations. In Proceedings of the 5th annual ACM web science conference (pp. 47-56).
    [CrossRef]   [Google Scholar]
  30. Kellogg, K. C., & Sadeh-Sharvit, S. (2022). Pragmatic AI-augmentation in mental healthcare: key technologies, potential benefits, and real-world challenges and solutions for frontline clinicians. Frontiers in psychiatry, 13, 990370.
    [CrossRef]   [Google Scholar]
  31. Yoon, J., Kang, C., Kim, S., & Han, J. (2022, June). D-vlog: Multimodal vlog dataset for depression detection. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 36, No. 11, pp. 12226-12234).
    [CrossRef]   [Google Scholar]
  32. Girard, J. M., Cohn, J. F., Mahoor, M. H., Mavadati, S. M., Hammal, Z., & Rosenwald, D. P. (2014). Nonverbal social withdrawal in depression: Evidence from manual and automatic analyses. Image and vision computing, 32(10), 641-647.
    [CrossRef]   [Google Scholar]
  33. Koelstra, S., Muhl, C., Soleymani, M., Lee, J. S., Yazdani, A., Ebrahimi, T., ... & Patras, I. (2011). Deap: A database for emotion analysis; using physiological signals. IEEE transactions on affective computing, 3(1), 18-31.
    [CrossRef]   [Google Scholar]
  34. Zheng, W. L., & Lu, B. L. (2015). Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Transactions on autonomous mental development, 7(3), 162-175.
    [CrossRef]   [Google Scholar]
  35. Losada, D. E., & Crestani, F. (2016, August). A test collection for research on depression and language use. In International conference of the cross-language evaluation forum for European languages (pp. 28-39). Cham: Springer International Publishing.
    [CrossRef]   [Google Scholar]
  36. Coppersmith, G., Dredze, M., Harman, C., & Hollingshead, K. (2015). From ADHD to SAD: Analyzing the language of mental health on Twitter through self-reported diagnoses. In Proceedings of the 2nd workshop on computational linguistics and clinical psychology: from linguistic signal to clinical reality (pp. 1-10).
    [Google Scholar]
  37. Chen, S. Y., Hsu, C. C., Kuo, C. C., & Ku, L. W. (2018). Emotionlines: An emotion corpus of multi-party conversations. arXiv preprint arXiv:1802.08379.
    [Google Scholar]
  38. Busso, C., Bulut, M., Lee, C. C., Kazemzadeh, A., Mower, E., Kim, S., ... & Narayanan, S. S. (2008). IEMOCAP: Interactive emotional dyadic motion capture database. Language resources and evaluation, 42(4), 335-359.
    [CrossRef]   [Google Scholar]
  39. Poria, S., Hazarika, D., Majumder, N., Naik, G., Cambria, E., & Mihalcea, R. (2018). Meld: A multimodal multi-party dataset for emotion recognition in conversations. arXiv preprint arXiv:1810.02508.
    [Google Scholar]
  40. Gratch, J., Artstein, R., Lucas, G. M., Stratou, G., Scherer, S., Nazarian, A., ... & Morency, L. P. (2014, May). The distress analysis interview corpus of human and computer interviews. In LREC (Vol. 14, pp. 3123-3128).
    [Google Scholar]
  41. Cai, H., Yuan, Z., Gao, Y., Sun, S., Li, N., Tian, F., ... & Hu, B. (2022). A multi-modal open dataset for mental-disorder analysis. Scientific Data, 9(1), 178.
    [CrossRef]   [Google Scholar]
  42. Pirina, I., & Çöltekin, Ç. (2018, October). Identifying depression on reddit: The effect of training data. In Proceedings of the 2018 EMNLP workshop SMM4H: the 3rd social media mining for health applications workshop & shared task (pp. 9-12).
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Wang, L., & Wu, J. (2025). Advances in Artificial Intelligence-Based Depression Diagnosis: A Systematic Review. ICCK Transactions on Emerging Topics in Artificial Intelligence, 2(3), 148–156. https://doi.org/10.62762/TETAI.2025.416797

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 143
PDF Downloads: 38

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
ICCK Transactions on Emerging Topics in Artificial Intelligence

ICCK Transactions on Emerging Topics in Artificial Intelligence

ISSN: 3068-6652 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/