-
CiteScore
-
Impact Factor
Volume 1, Issue 1, ICCK Transactions on Radiology and Imaging
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Radiology and Imaging, Volume 1, Issue 1, 2025: 1-10

Free to Read | Research Article | 01 August 2025
Lung Cancer Classification Using Deep Neural Network: Enhancing Detection through Medical Imaging and AI
1 School of Engineering, Faculty of Computing, Engineering and the Built Environment, Ulster University, Jordanstown Campus, Belfast, BT37 0QB, United Kingdom
2 Department of Artificial Intelligence, College of Engineering and Technology, Grand Canyon University, Phoenix, AZ, United States
3 Department of Criminology and Forensic Sciences, Lahore Garrison University, Lahore, Pakistan
* Corresponding Author: Muhammad Haseeb Zia, [email protected]
Received: 29 April 2025, Accepted: 18 June 2025, Published: 01 August 2025  
Abstract
Lung cancer is predominantly illustrated as the principal cause of cancer-related deaths globally, especially the diagnosis of late stages creates substantial reductions in survival rate. Recent advancements in artificial intelligence (AI) and medical imaging offer promising avenues for early and accurate detection of pulmonary malignancies. This paper introduces an EfficientNetB0 deep learning architecture used for performing multiclass lung cancer detection through computed tomography scan analysis. The EfficientNetB0 framework was validated, trained and tested on six clinically relevant CT scan image types within a publicly accessible Kaggle database. A combination of transfer learning with complete fine-tuning and customized classification head along with regularization enabled the model to reach a test accuracy of 83.58% macro-average AUC of 0.9492 and a weighted F1-score of 0.85. The testing results demonstrated excellent performance in malignant and normal classes, however have an insufficient ability to identify underrepresented benign cases due to class imbalance effects. This research includes visual diagrams of system architecture together with training performance graphs and a complete metric data examination. The achieved results elucidated EfficientNetB0 as an effective and lightweight backbone solution for computer-aided diagnosis systems used in pulmonary oncology.

Graphical Abstract
Lung Cancer Classification Using Deep Neural Network: Enhancing Detection through Medical Imaging and AI

Keywords
lung cancer
deep learning
convolutional neural networks
EfficientNetB0
medical image analysis
computed tomography
computer-aided diagnosis
transfer learning

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Armato III, S. G., McLennan, G., Bidaut, L., McNitt‐Gray, M. F., Meyer, C. R., Reeves, A. P., ... & Clarke, L. P. (2011). The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Medical physics, 38(2), 915-931.
    [CrossRef]   [Google Scholar]
  2. Ardila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reicher, J. J., Peng, L., ... & Shetty, S. (2019). End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature medicine, 25(6), 954-961.
    [CrossRef]   [Google Scholar]
  3. Jin, H., Yu, C., Zhang, J., Zheng, R., Fu, Y., & Zhao, Y. (2025). Multitask Swin Transformer for classification and characterization of pulmonary nodules in CT images. Quantitative Imaging in Medicine and Surgery, 15(3), 1845.
    [CrossRef]   [Google Scholar]
  4. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
    [Google Scholar]
  5. He, X., Yang, X., Zhang, S., Zhao, J., Zhang, Y., Xing, E., & Xie, P. (2020). Sample-efficient deep learning for COVID-19 diagnosis based on CT scans. medrxiv, 2020-04.
    [CrossRef]   [Google Scholar]
  6. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.
    [CrossRef]   [Google Scholar]
  7. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical image analysis, 42, 60-88.
    [CrossRef]   [Google Scholar]
  8. McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., ... & Shetty, S. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89-94.
    [CrossRef]   [Google Scholar]
  9. Nam, J. G., Park, S., Hwang, E. J., Lee, J. H., Jin, K. N., Lim, K. Y., ... & Park, C. M. (2019). Development and validation of deep learning–based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology, 290(1), 218-228.
    [CrossRef]   [Google Scholar]
  10. Cohen, S., Rivenson, Y., Dar, S. U., Şentürk, A., & Rajpurkar, P. (2021). AI applications in pathology. Archives of Pathology & Laboratory Medicine, 145(5), 542–553.
    [CrossRef]   [Google Scholar]
  11. Asif, A., Rajpoot, K., Graham, S., Snead, D., Minhas, F., & Rajpoot, N. (2023). Unleashing the potential of AI for pathology: challenges and recommendations. The Journal of pathology, 260(5), 564-577.
    [CrossRef]   [Google Scholar]
  12. Pham, H. H., Le, T. T., Tran, D. Q., Ngo, D. T., & Nguyen, H. Q. (2021). Interpreting chest X-rays via CNNs that exploit hierarchical disease dependencies and uncertainty labels. Neurocomputing, 437, 186-194.
    [CrossRef]   [Google Scholar]
  13. Song, A. H., Jaume, G., Williamson, D. F., Lu, M. Y., Vaidya, A., Miller, T. R., & Mahmood, F. (2023). Artificial intelligence for digital and computational pathology. Nature Reviews Bioengineering, 1(12), 930-949.
    [CrossRef]   [Google Scholar]
  14. Rathi, D. (2022). CT Scan Images for Lung Cancer [Dataset]. Kaggle Repository. Retrieved from https://www.kaggle.com/datasets/dishantrathi20/ct-scan-images-for-lung-cancer
    [Google Scholar]
  15. Setio, A. A. A., Ciompi, F., Litjens, G., Gerke, P., Jacobs, C., Van Riel, S. J., ... & Van Ginneken, B. (2016). Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE transactions on medical imaging, 35(5), 1160-1169.
    [CrossRef]   [Google Scholar]
  16. Shin, H. C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., ... & Summers, R. M. (2016). Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE transactions on medical imaging, 35(5), 1285-1298.
    [CrossRef]   [Google Scholar]
  17. Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (pp. 6105-6114). PMLR.
    [Google Scholar]
  18. Wang, S., Su, Z., Ying, L., Peng, X., Zhu, S., Liang, F., ... & Liang, D. (2016, April). Accelerating magnetic resonance imaging via deep learning. In 2016 IEEE 13th international symposium on biomedical imaging (ISBI) (pp. 514-517). IEEE.
    [CrossRef]   [Google Scholar]
  19. Xie, Y., Xia, Y., Zhang, J., Song, Y., Feng, D., Fulham, M., & Cai, W. (2018). Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT. IEEE transactions on medical imaging, 38(4), 991-1004.
    [CrossRef]   [Google Scholar]
  20. Zhang, C., Aamir, M., Guan, Y., Al-Razgan, M., Awwad, E. M., Ullah, R., ... & Ghadi, Y. Y. (2024). Enhancing lung cancer diagnosis with data fusion and mobile edge computing using DenseNet and CNN. Journal of Cloud Computing, 13(1), 91.
    [CrossRef]   [Google Scholar]
  21. Feroui, A., Saim, M., Lazouni, M. E. A., Lazzouni, S. A., Elaouaber, Z. A., & Messadi, M. (2024). Improved diagnosis of lung cancer classification based on deep learning method. International Journal of Biomedical Engineering and Technology, 46(2), 138-159.
    [CrossRef]   [Google Scholar]
  22. Wang, L. (2022). Deep learning techniques to diagnose lung cancer. Cancers, 14(22), 5569.
    [CrossRef]   [Google Scholar]
  23. Kumar, S., Kumar, H., Kumar, G., Singh, S. P., Bijalwan, A., & Diwakar, M. (2024). A methodical exploration of imaging modalities from dataset to detection through machine learning paradigms in prominent lung disease diagnosis: a review. BMC Medical Imaging, 24(1), 30.
    [CrossRef]   [Google Scholar]
  24. Thangaraj, R., Pandiyan, P., Ramakrishnan, J., Nallakumar, R., & Eswaran, S. (2023). A deep convolution neural network for automated COVID-19 disease detection using chest X-ray images. Healthcare analytics, 4, 100278.
    [CrossRef]   [Google Scholar]
  25. Rehman, K. U., Jianqiang, L., Yasin, A., Bilal, A., Basheer, S., Ullah, I., ... & Tian, Y. (2025). A feature fusion attention-based deep learning algorithm for mammographic architectural distortion classification. IEEE Journal of Biomedical and Health Informatics.
    [CrossRef]   [Google Scholar]
  26. Kieu, S. T. H., Bade, A., Hijazi, M. H. A., & Kolivand, H. (2020). A survey of deep learning for lung disease detection on medical images: state-of-the-art, taxonomy, issues and future directions. Journal of imaging, 6(12), 131.
    [CrossRef]   [Google Scholar]
  27. Abdulahi, A. T., Ogundokun, R. O., Adenike, A. R., Shah, M. A., & Ahmed, Y. K. (2024). PulmoNet: a novel deep learning based pulmonary diseases detection model. BMC Medical Imaging, 24(1), 51.
    [CrossRef]   [Google Scholar]
  28. Huang, S. C., Kothari, T., Banerjee, I., Chute, C., Ball, R. L., Borus, N., ... & Lungren, M. P. (2020). PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging. NPJ digital medicine, 3(1), 61.
    [CrossRef]   [Google Scholar]
  29. Bushra, F., Chowdhury, M. E., Sarmun, R., Kabir, S., Said, M., Zoghoul, S. B., ... & Hasan, A. (2024). Deep learning in computed tomography pulmonary angiography imaging: A dual-pronged approach for pulmonary embolism detection. Expert Systems with Applications, 245, 123029.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Khalid, H., Shahwaiz, A., & Zia, M. H. (2025). Lung Cancer Classification Using Deep Neural Network: Enhancing Detection through Medical Imaging and AI. ICCK Transactions on Radiology and Imaging, 1(1), 1–10. https://doi.org/10.62762/TRI.2025.492338

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 497
PDF Downloads: 113

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
Institute of Central Computation and Knowledge (ICCK) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ICCK Transactions on Radiology and Imaging

ICCK Transactions on Radiology and Imaging

ISSN: request pending (Online) | ISSN: request pending (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/