-
CiteScore
-
Impact Factor
Volume 2, Issue 3, ICCK Transactions on Sensing, Communication, and Control
Volume 2, Issue 3, 2025
Submit Manuscript Edit a Special Issue
Academic Editor
Saleh Mobayen
Saleh Mobayen
National Yunlin University of Science and Technology, Taiwan
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Sensing, Communication, and Control, Volume 2, Issue 3, 2025: 200-214

Free to Read | Research Article | 28 August 2025
Fixed-Time Adaptive Optimal Parameter Estimation Subject to Dead-Zone and Control of Servo Systems
1 Faculty of Mechanical & Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
2 Faculty of Automation, Qingdao University, Qingdao 266071, China
* Corresponding Author: Xue Wang, [email protected]
Received: 05 June 2025, Accepted: 05 July 2025, Published: 28 August 2025  
Abstract
A fixed-time adaptive optimal parameter estimation (FxT-AOPE) scheme is proposed to address the difficulties in estimating dead zone parameters and slow convergence speed of tracking errors in permanent magnet synchronous motor systems. First, the continuous piecewise linear neural network is used to model the nonlinear dead zone dynamics. Second, an auxiliary filter is constructed to extract estimation errors, and this filter is used to drive an adaptive law with time-varying gain, minimizing the cost function of estimation errors and achieving adaptive optimal parameter estimation (AOPE). Then, the AOPE method is introduced into the fixed-time non-singular terminal sliding mode control (FxT-NTSMC) of the permanent magnet synchronous motor system, and the FxT-AOPE strategy is proposed to ensure the fixed time convergence of estimation error and tracking error. The stability of the closed-loop system is analyzed using Lyapunov stability theory. Finally, the feasibility of the proposed control strategy is verified through comparative simulations and experiments.

Graphical Abstract
Fixed-Time Adaptive Optimal Parameter Estimation Subject to Dead-Zone and Control of Servo Systems

Keywords
servo system
adaptive optimal parameter estimation
fixed-time convergence
dead-zone
sliding mode control

Data Availability Statement
Data will be made available on request.

Funding
This work was supported by the National Natural Science Foundation of China under Grant 62173194.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Kashif, M., & Singh, B. (2021). Solar PV-fed reverse saliency spoke-type PMSM with hybrid ANF-based self-sensing for water pump system. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(4), 3927–3939.
    [CrossRef]   [Google Scholar]
  2. Ping, Z., Jia, Y., Li, Y., Huang, Y., Wang, H., & Lu, J. G. (2022). Global position tracking control of PMSM servo system via internal model approach and experimental validations. International Journal of Robust and Nonlinear Control, 32(16), 9017-9033.
    [CrossRef]   [Google Scholar]
  3. El Makrini, I., Rodriguez-Guerrero, C., Lefeber, D., & Vanderborght, B. (2016). The variable boundary layer sliding mode control: A safe and performant control for compliant joint manipulators. IEEE Robotics and Automation Letters, 2(1), 187-192.
    [CrossRef]   [Google Scholar]
  4. Nie, L., Zhou, M., Cao, W., & Huang, X. (2023). Improved nonlinear extended observer based adaptive fuzzy output feedback control for a class of uncertain nonlinear systems with unknown input hysteresis. IEEE Transactions on Fuzzy Systems, 31(10), 3679-3689.
    [CrossRef]   [Google Scholar]
  5. Nguyen, V. T., Bui, T. T., & Pham, H. Y. (2023). A finite-time adaptive fault tolerant control method for a robotic manipulator in task-space with dead zone, and actuator faults. International Journal of Control, Automation and Systems, 21(11), 3767-3776.
    [CrossRef]   [Google Scholar]
  6. Zhang, Z., Yang, C., & Ge, S. S. (2022). Decentralized adaptive control of large-scale nonlinear systems with time-delay interconnections and asymmetric dead-zone input. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(4), 2259-2270.
    [CrossRef]   [Google Scholar]
  7. Ibrir, S., & Su, C. Y. (2010). Simultaneous state and dead-zone parameter estimation for a class of bounded-state nonlinear systems. IEEE transactions on control systems technology, 19(4), 911-919.
    [CrossRef]   [Google Scholar]
  8. Na, J., He, H., Huang, Y., & Dong, R. (2021). Adaptive estimation of asymmetric dead-zone parameters for sandwich systems. IEEE Transactions on Control Systems Technology, 30(3), 1336-1344.
    [CrossRef]   [Google Scholar]
  9. Na, J., Xing, Y., & Costa-Castelló, R. (2018). Adaptive estimation of time-varying parameters with application to roto-magnet plant. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(2), 731-741.
    [CrossRef]   [Google Scholar]
  10. He, H., Na, J., Wu, J., Huang, Y., & Xing, Y. (2023). Fixed-time adaptive parameter estimation for Hammerstein systems subject to dead-zone. IEEE Transactions on Industrial Electronics, 71(4), 3862-3872.
    [CrossRef]   [Google Scholar]
  11. Chiu, S. (2012). Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems. Automatica, 48(2), 316–326.
    [CrossRef]   [Google Scholar]
  12. Huang, Y., & Jia, Y. (2018). Adaptive fixed-time six-DOF tracking control for noncooperative spacecraft fly-around mission. IEEE Transactions on Control Systems Technology, 27(4), 1796-1804.
    [CrossRef]   [Google Scholar]
  13. Zhang, Y., Tang, S., & Guo, J. (2018). Adaptive terminal angle constraint interception against maneuvering targets with fast fixed‐time convergence. International Journal of Robust and Nonlinear Control, 28(8), 2996-3014.
    [CrossRef]   [Google Scholar]
  14. Ni, J., Liu, L., Liu, C., Hu, X., & Li, S. (2016). Fast fixed-time nonsingular terminal sliding mode control and its application to chaos suppression in power system. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(2), 151-155.
    [CrossRef]   [Google Scholar]
  15. Utkin, V., Poznyak, A., Orlov, Y., & Polyakov, A. (2020). Conventional and high order sliding mode control. Journal of the Franklin Institute, 357(15), 10244-10261.
    [CrossRef]   [Google Scholar]
  16. Na, J., Chen, A. S., Herrmann, G., Burke, R., & Brace, C. (2017). Vehicle engine torque estimation via unknown input observer and adaptive parameter estimation. IEEE Transactions on Vehicular Technology, 67(1), 409-422.
    [CrossRef]   [Google Scholar]
  17. Wang, S. (2004). General constructive representations for continuous piecewise-linear functions. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(9), 1889-1896.
    [CrossRef]   [Google Scholar]
  18. Cui, L., Jin, N., Chang, S., Zuo, Z., & Zhao, Z. (2022). Fixed-time ESO based fixed-time integral terminal sliding mode controller design for a missile. ISA transactions, 125, 237-251.
    [CrossRef]   [Google Scholar]
  19. Liu, C., & Liu, Y. (2022). Finite-time stabilization with arbitrarily prescribed settling-time for uncertain nonlinear systems. Systems & Control Letters, 159, 105088.
    [CrossRef]   [Google Scholar]
  20. Chen, C., Li, L., Peng, H., Yang, Y., Mi, L., & Wang, L. (2019). A new fixed-time stability theorem and its application to the synchronization control of memristive neural networks. Neurocomputing, 349, 290-300.
    [CrossRef]   [Google Scholar]
  21. Ioannou, P. A., & Sun, J. (2012). Robust adaptive control. Courier Corporation.
    [Google Scholar]
  22. Ioannou, P. A., & Sun, J. (1996). Robust adaptive control (Vol. 1, pp. 75-76). Upper Saddle River, NJ: PTR Prentice-Hall.
    [Google Scholar]
  23. Na, J., Mahyuddin, M. N., Herrmann, G., Ren, X., & Barber, P. (2015). Robust adaptive finite‐time parameter estimation and control for robotic systems. International Journal of Robust and Nonlinear Control, 25(16), 3045-3071.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Wang, S., & Wang, X. (2025). Fixed-Time Adaptive Optimal Parameter Estimation Subject to Dead-Zone and Control of Servo Systems. ICCK Transactions on Sensing, Communication, and Control, 2(3), 200–214. https://doi.org/10.62762/TSCC.2025.143677

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 162
PDF Downloads: 53

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
Institute of Central Computation and Knowledge (ICCK) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ICCK Transactions on Sensing, Communication, and Control

ICCK Transactions on Sensing, Communication, and Control

ISSN: 3068-9287 (Online) | ISSN: 3068-9279 (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/