-
CiteScore
-
Impact Factor
Volume 2, Issue 3, ICCK Transactions on Sensing, Communication, and Control
Volume 2, Issue 3, 2025
Submit Manuscript Edit a Special Issue
Academic Editor
Debnath Bhattacharyya
Debnath Bhattacharyya
KL University, India
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Sensing, Communication, and Control, Volume 2, Issue 3, 2025: 132-146

Research Article | 20 July 2025
Primary Thought on the Incorporation of Intelligent Control and U-control (I-U-control)
1 School of Engineering, University of the West of England, Bristol BS16 1QY, United Kingdom
2 College of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
* Corresponding Author: Haihong Wang, [email protected]
Received: 05 April 2025, Accepted: 06 May 2025, Published: 20 July 2025  
Abstract
This study explains the main idea and structure of a What-How intelligent control (WH-I-control) system and a universal control (U-control) system. The system has two control layers. The bottom layer uses the U-control framework to manage 'How' to control within a universal framework. The top layer uses intelligent control (I-control) to coordinate and guide 'What' to achieve both global and local control goals. This study also reviews the configurations, functions, and integration of these two control layers in analysis, design, and applications.

Graphical Abstract
Primary Thought on the Incorporation of Intelligent Control and U-control (I-U-control)

Keywords
universal(U)-control
data-driven operation
control Lyapunov stability
lyapunov derivative inequality
intelligent (I)-control
goal-oriented control systems (GOCS)
What-How intelligent control systems (WH-ICS)

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Zhu, Q., Zhang, W., Li, S., Chen, Q., Na, J., & Ding, H. (2025). U-control–a universal platform for control system design with inversion/cancellation of nonlinearity, dynamic and coupling through model-based to model-free procedures. International Journal of Systems Science, 56(3), 484-501.
    [CrossRef]   [Google Scholar]
  2. Goodwin, T., Xu, J., Celik, N., & Chen, C. H. (2024). Real-time digital twin-based optimization with predictive simulation learning. Journal of Simulation, 18(1), 47-64.
    [CrossRef]   [Google Scholar]
  3. Hussain, N. A. A., Ali, S. S. A., Ovinis, M., Arshad, M. R., & Al-Saggaf, U. M. (2019). Underactuated coupled nonlinear adaptive control synthesis using U-model for multivariable unmanned marine robotics. IEEE Access, 8, 1851-1865.
    [CrossRef]   [Google Scholar]
  4. Bhattacharyya, S. P., Datta, A., & Keel, L. H. (2018). Linear control theory: structure, robustness, and optimization. CRC press.
    [CrossRef]   [Google Scholar]
  5. Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM computing surveys (CSUR), 35(3), 268-308.
    [CrossRef]   [Google Scholar]
  6. Yang, X. S. (Ed.). (2015). Recent advances in swarm intelligence and evolutionary computation (p. 303). Switzerland: Springer International Publishing.
    [CrossRef]   [Google Scholar]
  7. Kuhnle, A., Kaiser, J. P., Theiß, F., Stricker, N., & Lanza, G. (2021). Designing an adaptive production control system using reinforcement learning. Journal of Intelligent Manufacturing, 32, 855-876.
    [CrossRef]   [Google Scholar]
  8. Dorigo, M., & Stützle, T. (2018). Ant colony optimization: overview and recent advances. Handbook of metaheuristics, 311-351.
    [CrossRef]   [Google Scholar]
  9. Malhotra, R., Singh, N., & Singh, Y. (2011). Genetic algorithms: Concepts, design for optimization of process controllers. Computer and information science, 4(2), 39.
    [Google Scholar]
  10. Das, S., & Suganthan, P. N. (2010). Differential evolution: A survey of the state-of-the-art. IEEE transactions on evolutionary computation, 15(1), 4-31.
    [CrossRef]   [Google Scholar]
  11. Naeem, S., Ali, A., Anam, S., & Ahmed, M. M. (2023). An unsupervised machine learning algorithms: Comprehensive review. International Journal of Computing and Digital Systems. http://dx.doi.org/10.12785/ijcds/130172
    [Google Scholar]
  12. Zhao, W., Queralta, J. P., & Westerlund, T. (2020, December). Sim-to-real transfer in deep reinforcement learning for robotics: a survey. In 2020 IEEE symposium series on computational intelligence (SSCI) (pp. 737-744). IEEE.
    [CrossRef]   [Google Scholar]
  13. Choi, W. H., & Kim, J. (2024). Unsupervised learning approach for anomaly detection in industrial control systems. Applied System Innovation, 7(2), 18.
    [CrossRef]   [Google Scholar]
  14. Wang, R., Gao, L., Bai, C., & Sun, H. (2020). U‐Model‐Based Sliding Mode Controller Design for Quadrotor UAV Control Systems.  Mathematical Problems in Engineering, 2020(1), 4343214.
    [CrossRef]   [Google Scholar]
  15. Iqbal, R., Maniak, T., Doctor, F., & Karyotis, C. (2019). Fault detection and isolation in industrial processes using deep learning approaches. IEEE Transactions on Industrial Informatics, 15(5), 3077-3084.
    [CrossRef]   [Google Scholar]
  16. Garaffa, L. C., Basso, M., Konzen, A. A., & de Freitas, E. P. (2021). Reinforcement learning for mobile robotics exploration: A survey. IEEE Transactions on Neural Networks and Learning Systems, 34(8), 3796-3810.
    [CrossRef]   [Google Scholar]
  17. Gu, S., Holly, E., Lillicrap, T., & Levine, S. (2017, May). Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 3389-3396). IEEE.
    [CrossRef]   [Google Scholar]
  18. Xin, Q., Wu, G., Fang, W., Cao, J., & Ping, Y. (2021, October). Opportunities for reinforcement learning in industrial automation. In 2021 7th International Conference on Big Data and Information Analytics (BigDIA) (pp. 496-504). IEEE.
    [CrossRef]   [Google Scholar]
  19. Wen, T., Fang, Y., & Lu, B. (2022). Neural network-based adaptive sliding mode control for underactuated dual overhead cranes suffering from matched and unmatched disturbances. Autonomous Intelligent Systems, 2(1), 1.
    [CrossRef]   [Google Scholar]
  20. Abdullah, F. M., Al-Ahmari, A. M., & Anwar, S. (2023). A hybrid fuzzy multi-criteria decision-making model for evaluating the influence of Industry 4.0 technologies on manufacturing strategies. Machines, 11(2), 310.
    [CrossRef]   [Google Scholar]
  21. Refoufi, S., & Benmahammed, K. (2018). Control of a manipulator robot by neuro-fuzzy subsets form approach control optimized by the genetic algorithms. ISA transactions, 77, 133-145.
    [CrossRef]   [Google Scholar]
  22. Chojecki, A., Ambroziak, A., & Borkowski, P. (2023). Fuzzy controllers instead of classical PIDs in HVAC equipment: Dusting off a well-known technology and Today’s implementation for better energy efficiency and user comfort. Energies, 16(7), 2967.
    [CrossRef]   [Google Scholar]
  23. Shetty, S. H., Shetty, S., Singh, C., & Rao, A. (2022). Supervised machine learning: algorithms and applications. Fundamentals and methods of machine and deep learning: algorithms, tools and applications, 1-16.
    [CrossRef]   [Google Scholar]
  24. Baclawski, K., Chan, E. S., Gawlick, D., Ghoneimy, A., Gross, K., Liu, Z. H., & Zhang, X. (2017). Framework for ontology-driven decision making. Applied Ontology, 12(3-4), 245-273.
    [CrossRef]   [Google Scholar]
  25. Grosan, C., Abraham, A., Jain, L. C., & Kacprzyk, J. (2011). Intelligent systems (Vol. 17, pp. 261-268). Berlin: Springer.
    [CrossRef]   [Google Scholar]
  26. Yang, W., Wei, Y., Wei, H., Chen, Y., Huang, G., Li, X., ... & Kang, B. (2023). Survey on explainable AI: From approaches, limitations and applications aspects. Human-Centric Intelligent Systems, 3(3), 161-188.
    [CrossRef]   [Google Scholar]
  27. Dridi, I., Hamza, A., & Ben Yahia, N. (2023). A new approach to controlling an active suspension system based on reinforcement learning. Advances in Mechanical Engineering, 15(6), 16878132231180480.
    [CrossRef]   [Google Scholar]
  28. Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., ... & Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.
    [Google Scholar]
  29. Zhu, Q. (2023). Model-free sliding mode enhanced proportional, integral, and derivative (SMPID) control. Axioms, 12(8), 721.
    [CrossRef]   [Google Scholar]
  30. Vallon, C., Pustilnik, M., Pinto, A., & Borrelli, F. (2024). Learning hierarchical control systems for autonomous systems with energy constraints. arXiv preprint arXiv:2403.14536.
    [CrossRef]   [Google Scholar]
  31. Farina, M., & Scattolini, R. (2019). Distributed MPC for large-scale systems. Handbook of Model Predictive Control, 239-258.
    [CrossRef]   [Google Scholar]
  32. Yang, X., & Zhou, Y. (2024). Energy Management of Plug-In Hybrid Electric Vehicles for Autonomous Driving in a Following Environment Based on Fuzzy Adaptive PID Control. IEEE Access.
    [CrossRef]   [Google Scholar]
  33. Chen, W. H. (2024). Goal-oriented control systems (gocs): From how to what. IEEE/CAA Journal of Automatica Sinica, 11(4), 816-819.
    [CrossRef]   [Google Scholar]
  34. Liu, D., Xue, S., Zhao, B., Luo, B., & Wei, Q. (2020). Adaptive dynamic programming for control: A survey and recent advances. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(1), 142-160.
    [CrossRef]   [Google Scholar]
  35. Zhao, Y., Du, X., Xia, G., & Wu, L. (2015). A novel algorithm for wavelet neural networks with application to enhanced PID controller design. Neurocomputing, 158, 257-267.
    [CrossRef]   [Google Scholar]
  36. Giernacki, W. (2022). Minimum energy control of quadrotor UAV: Synthesis and performance analysis of control system with neurobiologically inspired intelligent controller (BELBIC). Energies, 15(20), 7566.
    [CrossRef]   [Google Scholar]
  37. Hou, Z., & Xiong, S. (2019). On model-free adaptive control and its stability analysis. IEEE Transactions on Automatic Control, 64(11), 4555-4569.
    [CrossRef]   [Google Scholar]
  38. Wang, C. S., & Wu, M. (2011). Hierarchical intelligent control system and its application to the sintering process. IEEE Transactions on Industrial Informatics, 9(1), 190-197.
    [CrossRef]   [Google Scholar]
  39. Gutiérrez-Escalona, J., Roncero-Clemente, C., Husev, O., Matiushkin, O., & Blaabjerg, F. (2024). Artificial Intelligence in the Hierarchical Control of ac, dc and Hybrid ac/dc Microgrids–A Review. IEEE Access.
    [CrossRef]   [Google Scholar]
  40. He, F., Yang, R., Shi, L., & Huang, X. (2025). A decentralized framework for kernel PCA with projection consensus constraints. IEEE Transactions on Pattern Analysis and Machine Intelligence.
    [CrossRef]   [Google Scholar]
  41. Li, G., Li, Q., Yang, C., Su, Y., Yuan, Z., & Wu, X. (2023). The classification and new trends of shared control strategies in telerobotic systems: A survey. IEEE Transactions on Haptics, 16(2), 118-133.
    [CrossRef]   [Google Scholar]
  42. Zhu, Q., Li, R., & Zhang, J. (2023). Model-free robust decoupling control of nonlinear nonaffine dynamic systems. International Journal of Systems Science, 54(13), 2590-2607.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Zhu, Q., & Wang, H. (2025). Primary Thought on the Incorporation of Intelligent Control and U-control (I-U-control). ICCK Transactions on Sensing, Communication, and Control, 2(3), 132–146. https://doi.org/10.62762/TSCC.2025.880778

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 29
PDF Downloads: 0

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
Institute of Central Computation and Knowledge (ICCK) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ICCK Transactions on Sensing, Communication, and Control

ICCK Transactions on Sensing, Communication, and Control

ISSN: pending (Online) | ISSN: pending (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/