-
CiteScore
-
Impact Factor
Volume 2, Issue 3, Chinese Journal of Information Fusion
Volume 2, Issue 3, 2025
Submit Manuscript Edit a Special Issue
Academic Editor
Deqiang Han
Deqiang Han
Xi'an Jiaotong University, China
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Chinese Journal of Information Fusion, Volume 2, Issue 3, 2025: 253-274

Open Access | Research Article | 26 September 2025
MgEL: Quantum Entanglement-Inspired Evidence Fusion for Learning with Noisy Labels
1 Key Laboratory of Measurement and Control of CSE, School of Automation, Southeast University, Nanjing 210018, China
2 Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110167, China
3 Southeast University Shenzhen Research Institute, Shenzhen 518063, China
* Corresponding Author: Xinde Li, [email protected]
Received: 21 April 2025, Accepted: 23 July 2025, Published: 26 September 2025  
Abstract
With the rise of data engineering-driven automatic annotation strategies, deep learning has demonstrated remarkable performance and strong competitiveness in intelligent fault diagnosis. However, the inherent limitations of automatic annotators inevitably introduce noisy labels, which in turn hinder the generalization and accuracy of diagnostic models. Although numerous Learning with Noisy Labels (LNL) methods attempt to alleviate the impact of label noise through sample selection or label correction, most rely heavily on model predictions to guide training. This self-reinforcing mechanism frequently leads to confirmation bias, especially under high-noise conditions, thereby limiting their effectiveness. To address these challenges while preserving the full data utility, this paper proposes a novel approach termed the Multi-granularity Evidence Labels (MgEL), inspired by the principles of quantum entanglement and collapse. In MgEL, we perform feature-space fusion between entangled sub-distributions to construct a superposition state, from which two auxiliary labels are derived: a pseudo-label obtained by selecting the class with the maximum amplitude and a collapsed label sampled probabilistically according to the class-wise amplitude distribution. The collapsed label represents an uncertainty-aware observation, while the pseudo-label represents the most confident class estimation. These are then fused with the original annotation to form multi-granularity evidence labels. This approach allows MgEL to suppress confirmation bias and improve robustness under noisy supervision. Extensive experiments validate the effectiveness and reliability of MgEL, particularly in high-noise scenarios (e.g., noise intensity $\eta \ge 80\%$), underscoring its potential for practical deployment in low-cost, data-driven intelligent fault diagnosis systems.

Graphical Abstract
MgEL: Quantum Entanglement-Inspired Evidence Fusion for Learning with Noisy Labels

Keywords
learning with noisy labels
multi-granularity information fusion
fault diagnosis
deep learning
classification of time series signals

Data Availability Statement
Data will be made available on request.

Funding
This work was supported in part by the National Natural Science Foundation of China under Grant 62233003 and Grant 62073072; in part by the Key Projects of Key R&D Program of Jiangsu Province under Grant BE2020006 and Grant BE2020006-1; in part by the Shenzhen Science and Technology Program under Grant JCYJ20210324132202005 and Grant JCYJ20220818101206014.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Dunkin, F., Li, X., Hu, C., Wu, G., Li, H., Lu, X., & Zhang, Z. (2024). Like draws to like: A Multi-granularity Ball-Intra Fusion approach for fault diagnosis models to resists misleading by noisy labels. Advanced Engineering Informatics, 60, 102425.
    [CrossRef]   [Google Scholar]
  2. Li, X., Dunkin, F., & Dezert, J. (2024). Multi-source information fusion: Progress and future. Chinese Journal of Aeronautics, 37(7), 24–58.
    [CrossRef]   [Google Scholar]
  3. Zheng, X., Nie, J., He, Z., & Gao, M. (2025). Specific Task-Guided Collaborative Domain Generalization Network for Intelligent Fault Diagnosis under Unseen Conditions. IEEE Internet of Things Journal.
    [CrossRef]   [Google Scholar]
  4. Dunkin, F., Li, X., Li, H., Wu, G., Hu, C., & Ge, S. S. (2025). MgCNL: A Sample Separation Approach via Multi-Granularity Balls for Fault Diagnosis With the Interference of Noisy Labels. IEEE Transactions on Automation Science and Engineering, 22, 7748–7761.
    [CrossRef]   [Google Scholar]
  5. Hu, C., Zhang, Z., Li, C., Leng, M., Wang, Z., Wan, X., & Chen, C. (2025). A state of the art in digital twin for intelligent fault diagnosis. Advanced Engineering Informatics, 63, 102963.
    [CrossRef]   [Google Scholar]
  6. Zhang, W., Jiang, L., & Li, C. (2025). ELDP: Enhanced Label Distribution Propagation for Crowdsourcing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 47(3), 1850–1862.
    [CrossRef]   [Google Scholar]
  7. Yang, H., Wang, L., Pan, Y., & Chen, J.-J. (2025). A Teacher-Student Framework Leveraging Large Vision Model for Data Pre-Annotation and YOLO for Tunnel Lining Multiple Defects Instance Segmentation. Journal of Industrial Information Integration, 100790.
    [CrossRef]   [Google Scholar]
  8. Zhang, Y., Chen, Y., Fang, C., Wang, Q., Wu, J., & Xin, J. (2025). Learning from open-set noisy labels based on multi-prototype modeling. Pattern Recognition, 157, 110902.
    [CrossRef]   [Google Scholar]
  9. Bian, Z., Chang, Q., Wang, J., Pedrycz, W., & Pal, N. R. (2024). Takagi–sugeno–kang fuzzy systems for high-dimensional multilabel classification. IEEE Transactions on Fuzzy Systems, 32(6), 3790-3804.
    [CrossRef]   [Google Scholar]
  10. Sun, Y., Song, H., Guo, L., Gao, H., & Cao, A. (2025). A transfer learning method: Universal domain adaptation with noisy samples for bearing fault diagnosis. Advanced Engineering Informatics, 65, 103243.
    [CrossRef]   [Google Scholar]
  11. Song, H., Kim, M., Park, D., Shin, Y., & Lee, J.-G. (2023). Learning From Noisy Labels With Deep Neural Networks: A Survey. IEEE Transactions on Neural Networks and Learning Systems, 34(11), 8135–8153.
    [CrossRef]   [Google Scholar]
  12. Liu, Y., Zhong, Y., Ma, A., Zhao, J., & Zhang, L. (2023). Cross-resolution national-scale land-cover mapping based on noisy label learning: A case study of China. International Journal of Applied Earth Observation and Geoinformation, 118, 103265.
    [CrossRef]   [Google Scholar]
  13. Zhang, J., Song, B., Wang, H., Han, B., Liu, T., Liu, L., & Sugiyama, M. (2024). BadLabel: A Robust Perspective on Evaluating and Enhancing Label-Noise Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(6), 4398–4409.
    [CrossRef]   [Google Scholar]
  14. Chen, M., Zhao, Y., He, B., Han, Z., Huang, J., Wu, B., & Yao, J. (2024). Learning with noisy labels over imbalanced subpopulations. IEEE Transactions on Neural Networks and Learning Systems, 36(4), 6544-6555.
    [CrossRef]   [Google Scholar]
  15. Lu, Y., & He, W. (2024). Mitigating Noisy Supervision Using Synthetic Samples with Soft Labels. arXiv preprint arXiv:2406.16966.
    [Google Scholar]
  16. Kim, N.-R., Lee, J.-S., & Lee, J.-H. (2024). Learning with Structural Labels for Learning with Noisy Labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 27610–27620).
    [CrossRef]   [Google Scholar]
  17. Kim, S., Lee, D., Kang, S., Chae, S., Jang, S., & Yu, H. (2024, June). Learning Discriminative Dynamics with Label Corruption for Noisy Label Detection. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 22477-22487). IEEE.
    [CrossRef]   [Google Scholar]
  18. ATLAS Collaboration. (2024). Observation of quantum entanglement with top quarks at the ATLAS detector. Nature, 633(8030), 542.
    [CrossRef]   [Google Scholar]
  19. Schwarz, A., Rahal, J. R., Sahelices, B., Barroso-García, V., Weis, R., & Duque Anton, S. (2024). Data augmentation in predictive maintenance applicable to hydrogen combustion engines: a review. Artificial Intelligence Review, 58(1), 32.
    [CrossRef]   [Google Scholar]
  20. Mo, Z., Zhang, Z., Miao, Q., & Tsui, K.-L. (2025). Extended Invariant Risk Minimization for Machine Fault Diagnosis With Label Noise and Data Shift. IEEE Transactions on Neural Networks and Learning Systems, 36(8), 15476-15489.
    [CrossRef]   [Google Scholar]
  21. Yu, W., Dillon, T., Mostafa, F., Rahayu, W., & Liu, Y. (2020). A Global Manufacturing Big Data Ecosystem for Fault Detection in Predictive Maintenance. IEEE Transactions on Industrial Informatics, 16(1), 183–192.
    [CrossRef]   [Google Scholar]
  22. Wang, X., Wang, S., Liang, Y., & Lei, Z. (2025). Decisive vector guided column annotation. Pattern Recognition, 158, 110958.
    [CrossRef]   [Google Scholar]
  23. Nguyen, T., Ibrahim, S., & Fu, X. (2024). Noisy Label Learning with Instance-Dependent Outliers: Identifiability via Crowd Wisdom. Advances in Neural Information Processing Systems, 37, 97261–97298.
    [Google Scholar]
  24. Lin, Y., Yao, Y., & Liu, T. (2024). Learning the latent causal structure for modeling label noise. Advances in Neural Information Processing Systems, 37, 120549–120577.
    [Google Scholar]
  25. Li, Y., Han, H., Shan, S., & Chen, X. (2023). DISC: Learning From Noisy Labels via Dynamic Instance-Specific Selection and Correction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 24070–24079).
    [CrossRef]   [Google Scholar]
  26. Li, F., Li, K., Tian, J., & Zhou, J. (2024). Regroup Median Loss for Combating Label Noise. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, No. 12, pp. 13474–13482).
    [CrossRef]   [Google Scholar]
  27. Zhou, X., Liu, X., Zhai, D., Jiang, J., & Ji, X. (2023). Asymmetric Loss Functions for Noise-Tolerant Learning: Theory and Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(7), 8094–8109.
    [CrossRef]   [Google Scholar]
  28. Fang, C., Cheng, L., Mao, Y., Zhang, D., Fang, Y., Li, G., Qi, H., & Jiao, L. (2024). Separating Noisy Samples From Tail Classes for Long-Tailed Image Classification With Label Noise. IEEE Transactions on Neural Networks and Learning Systems, 35(11), 16036–16048.
    [CrossRef]   [Google Scholar]
  29. Xu, G., Yi, L., Xu, P., Li, J., Pu, R., Shui, C., Ling, C., McLeod, A. I., & Wang, B. (2025). Unraveling the Mysteries of Label Noise in Source-Free Domain Adaptation: Theory and Practice. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–17.
    [CrossRef]   [Google Scholar]
  30. Wang, Y., Ma, X., Chen, Z., Luo, Y., Yi, J., & Bailey, J. (2019). Symmetric cross entropy for robust learning with noisy labels. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 322–330).
    [CrossRef]   [Google Scholar]
  31. Wei, J., Liu, H., Liu, T., Niu, G., Sugiyama, M., & Liu, Y. (2021). To smooth or not? when label smoothing meets noisy labels. arXiv preprint arXiv:2106.04149.
    [Google Scholar]
  32. Sheng, M., Sun, Z., Chen, T., Pang, S., Wang, Y., & Yao, Y. (2025). Foster Adaptivity and Balance in Learning with Noisy Labels. In European Conference on Computer Vision (pp. 217–235).
    [CrossRef]   [Google Scholar]
  33. Wei, H., Feng, L., Chen, X., & An, B. (2020). Combating noisy labels by agreement: A joint training method with co-regularization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 13726–13735).
    [CrossRef]   [Google Scholar]
  34. Kim, D., Ryoo, K., Cho, H., & Kim, S. (2025). SplitNet: learnable clean-noisy label splitting for learning with noisy labels. International Journal of Computer Vision, 133(2), 549–566.
    [CrossRef]   [Google Scholar]
  35. Zhang, R., Cao, Z., Huang, Y., Yang, S., Xu, L., & Xu, M. (2025). Visible-Infrared Person Re-identification with Real-world Label Noise. IEEE Transactions on Circuits and Systems for Video Technology, 1–1.
    [CrossRef]   [Google Scholar]
  36. Bender, C. M., & Hook, D. W. (2024). $\mathcal{PT$-symmetric quantum mechanics. Reviews of Modern Physics, 96(4), 045002.
    [CrossRef]   [Google Scholar]
  37. Bose, S., Fuentes, I., Geraci, A. A., Khan, S. M., Qvarfort, S., Rademacher, M., Rashid, M., Toroš, M., Ulbricht, H., & Wanjura, C. C. (2025). Massive quantum systems as interfaces of quantum mechanics and gravity. Reviews of Modern Physics, 97(1), 015003.
    [CrossRef]   [Google Scholar]
  38. Liang, X.-B., Li, B., & Fei, S.-M. (2024). Signifying quantum uncertainty relations by optimal observable sets and the tightest uncertainty constants. Science China Physics, Mechanics & Astronomy, 67(9), 290311.
    [CrossRef]   [Google Scholar]
  39. Zhang, X., Wang, C., Zhou, W., Xu, J., & Han, T. (2024). Trustworthy diagnostics with out-of-distribution detection: A novel max-consistency and min-similarity guided deep ensembles for uncertainty estimation. IEEE Internet of Things Journal, 11(13), 23055-23067.
    [CrossRef]   [Google Scholar]
  40. Ruan, H., Wang, Y., Qin, Y., & Tang, B. (2021, October). An enhanced intelligent fault diagnosis method to combat label noise. In 2021 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD) (pp. 1-6). IEEE.
    [CrossRef]   [Google Scholar]
  41. Li, M., He, S., Chen, J., Feng, Y., & Xie, J. (2025). Label-smoothing dynamic decoupling augmented network for intelligent fault diagnosis under imbalanced data distribution with noisy labels. Measurement, 118664.
    [CrossRef]   [Google Scholar]
  42. Hu, C. K., Wei, C., Liu, C., Che, L., Zhou, Y., Xie, G., ... & Yu, D. (2024). Experimental sample-efficient quantum state tomography via parallel measurements. Physical Review Letters, 133(16), 160801.
    [CrossRef]   [Google Scholar]
  43. Deng, J., Liu, H., Fang, H., Shao, S., Wang, D., Hou, Y., Chen, D., & Tang, M. (2023). MgNet: A fault diagnosis approach for multi-bearing system based on auxiliary bearing and multi-granularity information fusion. Mechanical Systems and Signal Processing, 193, 110253.
    [CrossRef]   [Google Scholar]
  44. Fang, H., Deng, J., Chen, D., Jiang, W., Shao, S., Tang, M., & Liu, J. (2023). You can get smaller: A lightweight self-activation convolution unit modified by transformer for fault diagnosis. Advanced Engineering Informatics, 55, 101890.
    [CrossRef]   [Google Scholar]
  45. Kim, Y., Yun, J., Shon, H., & Kim, J. (2021). Joint Negative and Positive Learning for Noisy Labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9442–9451).
    [CrossRef]   [Google Scholar]
  46. Iscen, A., Valmadre, J., Arnab, A., & Schmid, C. (2022). Learning With Neighbor Consistency for Noisy Labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4672–4681).
    [CrossRef]   [Google Scholar]
  47. Cordeiro, F. R., & Carneiro, G. (2025). ANNE: Adaptive Nearest Neighbours and Eigenvector-based sample selection for robust learning with noisy labels. Pattern Recognition, 159, 111132.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Dunkin, F., & Li, X. (2025). MgEL: Quantum Entanglement-Inspired Evidence Fusion for Learning with Noisy Labels. Chinese Journal of Information Fusion, 2(3), 253–274. https://doi.org/10.62762/CJIF.2025.151851

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 77
PDF Downloads: 11

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Chinese Journal of Information Fusion

Chinese Journal of Information Fusion

ISSN: 2998-3371 (Online) | ISSN: 2998-3363 (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/