-
CiteScore
-
Impact Factor
Volume 1, Issue 4, ICCK Transactions on Advanced Computing and Systems
Volume 1, Issue 4, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Advanced Computing and Systems, Volume 1, Issue 4, 2025: 258-274

Open Access | Research Article | 28 October 2025
An Efficient Algorithm for Weather Forecasting Using Causal Graph Neural Network
1 College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
2 College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
3 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
4 Institute of Image Processing & Pattern Recognition, Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
5 Department of Computer Science, Westlake University, Hangzhou 310024, China
6 King Abdullah II School of Information Technology, The University of Jordan, Amman, Jordan
* Corresponding Author: Ahmad Ali, [email protected]
Received: 26 March 2025, Accepted: 09 July 2025, Published: 28 October 2025  
Abstract
The rapid accumulation of large-scale, long-term meteorological data presents unprecedented opportunities for data-driven weather modeling and high-resolution numerical weather prediction. While various deep learning techniques—such as Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNNs), and Graph Neural Networks (GNNs)—have been explored for weather forecasting, the complex spatial dependencies within historical meteorological data, particularly dynamic spatial correlations, remain insufficiently addressed. To tackle this challenge, we propose a Dynamic Spatio-Temporal Fusion Graph Network (DSTFGN), a novel module that integrates multivariate time-series analysis with graph-based causal inference to capture intricate and time-varying interdependencies among weather variables. The DSTFGN module fuses real-time inputs (e.g., sensor data, live weather feeds, external events) with historical records to model the propagation of disruptions—such as accidents or road closures—through the meteorological network. By effectively capturing dynamic spatial-temporal interactions, our approach significantly enhances forecasting accuracy and supports adaptive weather management strategies. Experimental evaluations on two real-world datasets demonstrate that DSTFGN consistently outperforms existing baseline models across short, medium, and long-term forecasting horizons.

Graphical Abstract
An Efficient Algorithm for Weather Forecasting Using Causal Graph Neural Network

Keywords
intelligent transportation systems
weather forecasting
causal graph learning
spatio-temporal attention
GCN

Data Availability Statement
Data will be made available on request.

Funding
This work was supported in part by the National Natural Science Foundation of China under Grant 62373255; in part by the Natural Science Foundation of Guangdong Province under Grant 2024A1515011204; in part by the Shenzhen Natural Science Fund through the Stable Support Plan Program under Grant 20220809175803001; in part by the Open Fund of National Engineering Laboratory for Big Data System Computing Technology under Grant SZU-BDSC-OF2024-15.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Ali, A., Zhu, Y., & Zakarya, M. (2022). Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction. Neural networks, 145, 233-247.
    [CrossRef]   [Google Scholar]
  2. Dai, F., Huang, P., Mo, Q., Xu, X., Bilal, M., & Song, H. (2022). ST-InNet: Deep spatio-temporal inception networks for traffic flow prediction in smart cities. IEEE Transactions on Intelligent Transportation Systems, 23(10), 19782-19794.
    [CrossRef]   [Google Scholar]
  3. Khan, M. M. H., Mustafa, M. R. U., Hossain, M. S., Shams, S., & Julius, A. D. (2023). Short-term and long-term rainfall forecasting using arima model. International Journal of Environmental Science and Development, 14(5), 292-298.
    [CrossRef]   [Google Scholar]
  4. Jin, M., Koh, H. Y., Wen, Q., Zambon, D., Alippi, C., Webb, G. I., ... & Pan, S. (2024). A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection. IEEE Transactions on Pattern Analysis and Machine Intelligence.
    [CrossRef]   [Google Scholar]
  5. Zhang, W., Yu, Y., Qi, Y., Shu, F., & Wang, Y. (2019). Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning. Transportmetrica A: Transport Science, 15(2), 1688-1711.
    [CrossRef]   [Google Scholar]
  6. Tang, C., Sun, J., Sun, Y., Peng, M., & Gan, N. (2020). A general traffic flow prediction approach based on spatial-temporal graph attention. IEEE Access, 8, 153731-153741.
    [CrossRef]   [Google Scholar]
  7. Qi, T., Chen, L., Li, G., Li, Y., & Wang, C. (2023). FedAGCN: A traffic flow prediction framework based on federated learning and Asynchronous Graph Convolutional Network. Applied Soft Computing, 138, 110175.
    [CrossRef]   [Google Scholar]
  8. Choi, J., & Park, N. (2023). Graph neural rough differential equations for traffic forecasting. ACM Transactions on Intelligent Systems and Technology, 14(4), 1-27.
    [CrossRef]   [Google Scholar]
  9. Huo, G., Zhang, Y., Wang, B., Gao, J., Hu, Y., & Yin, B. (2023). Hierarchical spatio–temporal graph convolutional networks and transformer network for traffic flow forecasting. IEEE Transactions on Intelligent Transportation Systems, 24(4), 3855-3867.
    [CrossRef]   [Google Scholar]
  10. Chen, J., Zheng, L., Hu, Y., Wang, W., Zhang, H., & Hu, X. (2024). Traffic flow matrix-based graph neural network with attention mechanism for traffic flow prediction. Information Fusion, 104, 102146.
    [CrossRef]   [Google Scholar]
  11. Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica: journal of the Econometric Society, 424-438.
    [CrossRef]   [Google Scholar]
  12. Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in neural information processing systems, 27.
    [Google Scholar]
  13. Ali, A., Zhu, Y., Chen, Q., Yu, J., & Cai, H. (2019, December). Leveraging spatio-temporal patterns for predicting citywide traffic crowd flows using deep hybrid neural networks. In 2019 IEEE 25th international conference on parallel and distributed systems (ICPADS) (pp. 125-132). IEEE.
    [CrossRef]   [Google Scholar]
  14. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
    [Google Scholar]
  15. Yu, B., Yin, H., & Zhu, Z. (2017). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875.
    [Google Scholar]
  16. Ali, A., Zhu, Y., & Zakarya, M. (2021). Exploiting dynamic spatio-temporal correlations for citywide traffic flow prediction using attention based neural networks. Information Sciences, 577, 852-870.
    [CrossRef]   [Google Scholar]
  17. Song, C., Lin, Y., Guo, S., & Wan, H. (2020, April). Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 01, pp. 914-921).
    [CrossRef]   [Google Scholar]
  18. Lan, S., Ma, Y., Huang, W., Wang, W., Yang, H., & Li, P. (2022, June). Dstagnn: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting. In International conference on machine learning (pp. 11906-11917). PMLR.
    [Google Scholar]
  19. Wei, Z., Zhao, H., Li, Z., Bu, X., Chen, Y., Zhang, X., ... & Wang, F. Y. (2023). STGSA: A novel spatial-temporal graph synchronous aggregation model for traffic prediction. IEEE/CAA Journal of Automatica Sinica, 10(1), 226-238.
    [CrossRef]   [Google Scholar]
  20. Jin, W., Lin, Y., Wu, Z., & Wan, H. (2018, March). Spatio-temporal recurrent convolutional networks for citywide short-term crowd flows prediction. In Proceedings of the 2nd International Conference on Compute and Data Analysis (pp. 28-35).
    [CrossRef]   [Google Scholar]
  21. Liu, M., Zhu, T., Ye, J., Meng, Q., Sun, L., & Du, B. (2023). Spatio-temporal autoencoder for traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 24(5), 5516-5526.
    [CrossRef]   [Google Scholar]
  22. Ma, Y., Lou, H., Yan, M., Sun, F., & Li, G. (2024). Spatio-temporal fusion graph convolutional network for traffic flow forecasting. Information Fusion, 104, 102196.
    [CrossRef]   [Google Scholar]
  23. Zheng, H., Lin, F., Feng, X., & Chen, Y. (2020). A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 22(11), 6910-6920.
    [CrossRef]   [Google Scholar]
  24. Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2017). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926.
    [Google Scholar]
  25. Li, F., Feng, J., Yan, H., Jin, G., Yang, F., Sun, F., ... & Li, Y. (2023). Dynamic graph convolutional recurrent network for traffic prediction: Benchmark and solution. ACM Transactions on Knowledge Discovery from Data, 17(1), 1-21.
    [CrossRef]   [Google Scholar]
  26. Park, C., Lee, C., Bahng, H., Tae, Y., Jin, S., Kim, K., ... & Choo, J. (2020, October). ST-GRAT: A novel spatio-temporal graph attention networks for accurately forecasting dynamically changing road speed. In Proceedings of the 29th ACM international conference on information & knowledge management (pp. 1215-1224).
    [CrossRef]   [Google Scholar]
  27. Fan, J., Weng, W., Tian, H., Wu, H., Zhu, F., & Wu, J. (2024). RGDAN: A random graph diffusion attention network for traffic prediction. Neural networks, 172, 106093.
    [CrossRef]   [Google Scholar]
  28. Shojaie, A., & Fox, E. B. (2022). Granger causality: A review and recent advances. Annual Review of Statistics and Its Application, 9(1), 289-319.
    [CrossRef]   [Google Scholar]
  29. He, S., Luo, Q., Du, R., Zhao, L., He, G., Fu, H., & Li, H. (2023). STGC-GNNs: A GNN-based traffic prediction framework with a spatial–temporal Granger causality graph. Physica A: Statistical Mechanics and its Applications, 623, 128913.
    [CrossRef]   [Google Scholar]
  30. Pamfil, R., Sriwattanaworachai, N., Desai, S., Pilgerstorfer, P., Georgatzis, K., Beaumont, P., & Aragam, B. (2020, June). Dynotears: Structure learning from time-series data. In International Conference on Artificial Intelligence and Statistics (pp. 1595-1605). Pmlr.
    [Google Scholar]
  31. Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., & Sejdinovic, D. (2019). Detecting and quantifying causal associations in large nonlinear time series datasets. Science advances, 5(11), eaau4996.
    [CrossRef]   [Google Scholar]
  32. Nauta, M., Bucur, D., & Seifert, C. (2019). Causal discovery with attention-based convolutional neural networks. Machine Learning and Knowledge Extraction, 1(1), 19.
    [CrossRef]   [Google Scholar]
  33. Guo, R., Cheng, L., Li, J., Hahn, P. R., & Liu, H. (2020). A survey of learning causality with data: Problems and methods. ACM Computing Surveys (CSUR), 53(4), 1-37.
    [CrossRef]   [Google Scholar]
  34. Fathi, M., Haghi Kashani, M., Jameii, S. M., & Mahdipour, E. (2022). Big data analytics in weather forecasting: A systematic review. Archives of Computational Methods in Engineering, 29(2), 1247-1275.
    [CrossRef]   [Google Scholar]
  35. Al Sukhni, H., Sakr, F., Alsmadi, M. K., Abd-Elghany, M., Gomaa, I. A., & Abdallah, S. (2025). Data-Driven Weather Prediction: Integrating Deep Learning and Ensemble Models for Robust Weather Forecasting. Journal of Cybersecurity & Information Management, 15(2).
    [CrossRef]   [Google Scholar]
  36. Brotzge, J. A., Berchoff, D., Carlis, D. L., Carr, F. H., Carr, R. H., Gerth, J. J., ... & Wang, X. (2023). Challenges and opportunities in numerical weather prediction. Bulletin of the American Meteorological Society, 104(3), E698-E705.
    [CrossRef]   [Google Scholar]
  37. Brotzge, J. A., Berchoff, D., Carlis, D. L., Carr, F. H., Carr, R. H., Gerth, J. J., ... & Wang, X. (2023). Challenges and opportunities in numerical weather prediction. Bulletin of the American Meteorological Society, 104(3), E698-E705.
    [CrossRef]   [Google Scholar]
  38. Haupt, S. E., Cowie, J., Linden, S., McCandless, T., Kosovic, B., & Alessandrini, S. (2018, October). Machine learning for applied weather prediction. In 2018 IEEE 14th international conference on e-science (e-Science) (pp. 276-277). IEEE.
    [CrossRef]   [Google Scholar]
  39. Schultz, M. G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L. H., ... & Stadtler, S. (2021). Can deep learning beat numerical weather prediction?. Philosophical Transactions of the Royal Society A, 379(2194), 20200097.
    [CrossRef]   [Google Scholar]
  40. Hu, N., Zhang, D., Xie, K., Liang, W., Li, K. C., & Zomaya, A. Y. (2024). Dynamic multi-scale spatial–temporal graph convolutional network for traffic flow prediction. Future Generation Computer Systems, 158, 323-332.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Ali, A., Naeem, H. M. Y., Ali, R., Asad, M., Heyat, M. B. B., & Alsarhan, T. (2025). An Efficient Algorithm for Weather Forecasting Using Causal Graph Neural Network. ICCK Transactions on Advanced Computing and Systems, 1(4), 258–274. https://doi.org/10.62762/TACS.2025.619794

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 48
PDF Downloads: 20

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
ICCK Transactions on Advanced Computing and Systems

ICCK Transactions on Advanced Computing and Systems

ISSN: 3068-7969 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/