-
CiteScore
-
Impact Factor
Volume 2, Issue 3, ICCK Transactions on Intelligent Systematics
Volume 2, Issue 3, 2025
Submit Manuscript Edit a Special Issue
Academic Editor
Thinagaran Perumal
Thinagaran Perumal
Universiti Putra Malaysia, Malaysia
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Intelligent Systematics, Volume 2, Issue 3, 2025: 169-189

Free to Read | Review Article | 17 August 2025
Artificial Intelligence in Chronic Pelvic Inflammatory Disease Management: A Comprehensive Review of Integrated Diagnostic Frameworks and Adaptive Therapeutic Systems
1 School of Engineering, Hong Kong University of Science and Technology, Hong Kong 999077, China
2 Department of Obstetrics and Gynecology, Jiangxi Fifth People's Hospital, Nanchang 330046, China
* Corresponding Author: Qian Hong, [email protected]
Received: 27 May 2025, Accepted: 27 June 2025, Published: 17 August 2025  
Abstract
Chronic Pelvic Inflammatory Disease (CPID) poses significant challenges to women's health, necessitating advanced management strategies. This paper provides a comprehensive review of artificial intelligence (AI)-based health management techniques for PID, focusing on their potential to enhance diagnosis, treatment personalization, and long-term monitoring. By synthesizing Bayesian probabilistic frameworks with ensemble Machine Learning architectures, we systematically evaluate AI-driven solutions for PID pathophysiology analysis, therapeutic efficacy prediction, and patient-specific intervention planning. These approaches collectively enhance diagnostic precision while addressing key challenges in therapeutic personalization and longitudinal care coordination. This review significantly advances intelligent PID care by resolving fundamental challenges in heterogeneous data integration, algorithmic transparency, and cross-institutional collaboration, ultimately offering a scalable blueprint for AI-powered gynecological health systems.

Graphical Abstract
Artificial Intelligence in Chronic Pelvic Inflammatory Disease Management: A Comprehensive Review of Integrated Diagnostic Frameworks and Adaptive Therapeutic Systems

Keywords
PID
bayesian network
machine learning

Data Availability Statement
Not applicable.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Sultana, A., Mehdi, S., Rahman, K., Fazmiya, M. J. A., Heyat, M. B. B., Akhtar, F., & Baig, A. A. (2022). Recent advancements of pelvic inflammatory disease: A review on evidence-based medicine. Computational Intelligence in Healthcare Applications, 101-120.
    [CrossRef]   [Google Scholar]
  2. Soe, N. N., Towns, J. M., Latt, P. M., Woodberry, O., Chung, M., Lee, D., ... & Fairley, C. K. (2024). Accuracy of symptom checker for the diagnosis of sexually transmitted infections using machine learning and Bayesian network algorithms. BMC Infectious Diseases, 24(1), 1408.
    [CrossRef]   [Google Scholar]
  3. Curry, A., Williams, T., & Penny, M. L. (2019). Pelvic inflammatory disease: diagnosis, management, and prevention. American family physician, 100(6), 357-364.
    [Google Scholar]
  4. Centers for Disease Control and Prevention. Pelvic Inflammatory Disease (PID) Treatment and Care. Retrieved from https://www.mayoclinic.org/diseases-conditions/pelvic-inflammatory-disease/diagnosis-treatment/drc-20352600
    [Google Scholar]
  5. Gradison, M. (2012). Pelvic inflammatory disease. American family physician, 85(8), 791-796.
    [Google Scholar]
  6. Sutton, M. Y., Sternberg, M., Zaidi, A., Louis, M. E. S., & Markowitz, L. E. (2005). Trends in pelvic inflammatory disease hospital discharges and ambulatory visits, United States, 1985–2001. Sexually transmitted diseases, 32(12), 778-784.
    [CrossRef]   [Google Scholar]
  7. Revzin, M. V., Mathur, M., Dave, H. B., Macer, M. L., & Spektor, M. (2016). Pelvic inflammatory disease: multimodality imaging approach with clinical-pathologic correlation. Radiographics, 36(5), 1579-1596.
    [CrossRef]   [Google Scholar]
  8. Haggerty, C. L., Gottlieb, S. L., Taylor, B. D., Low, N., Xu, F., & Ness, R. B. (2010). Risk of sequelae after Chlamydia trachomatis genital infection in women. The Journal of infectious diseases, 201(Supplement\_2), S134-S155.
    [CrossRef]   [Google Scholar]
  9. Kyrimi, E., McLachlan, S., Dube, K., Neves, M. R., Fahmi, A., & Fenton, N. (2021). A comprehensive scoping review of Bayesian networks in healthcare: Past, present and future. Artificial Intelligence in Medicine, 117, 102108.
    [CrossRef]   [Google Scholar]
  10. Stephenson, T. A. (2000). An introduction to Bayesian network theory and usage. IDIAP-RR 00-03, 78-83.
    [Google Scholar]
  11. Polotskaya, K., Muñoz-Valencia, C. S., Rabasa, A., Quesada-Rico, J. A., Orozco-Beltrán, D., & Barber, X. (2024). Bayesian networks for the diagnosis and prognosis of diseases: A scoping review. Machine Learning and Knowledge Extraction, 6(2), 1243-1262.
    [CrossRef]   [Google Scholar]
  12. Pandey, D., Niwaria, K., & Chourasia, B. (2019). Machine learning algorithms: a review. Mach. Learn, 6(2).
    [Google Scholar]
  13. Kononenko, I. (2001). Machine learning for medical diagnosis: history, state of the art and perspective. Artificial Intelligence in medicine, 23(1), 89-109.
    [CrossRef]   [Google Scholar]
  14. Zhang, Y., & Yang, Q. (2021). A survey on multi-task learning. IEEE transactions on knowledge and data engineering, 34(12), 5586-5609.
    [CrossRef]   [Google Scholar]
  15. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical image analysis, 42, 60-88.
    [CrossRef]   [Google Scholar]
  16. Muñoz-Valencia, C. S., Quesada, J. A., Orozco, D., & Barber, X. (2023). Employing Bayesian Networks for the Diagnosis and Prognosis of Diseases: A Comprehensive Review. arXiv preprint arXiv:2304.06400.
    [Google Scholar]
  17. Ngartera, L., Issaka, M. A., & Nadarajah, S. (2024). Application of bayesian neural networks in healthcare: three case studies. Machine Learning and Knowledge Extraction, 6(4), 2639-2658.
    [CrossRef]   [Google Scholar]
  18. McLachlan, S., Dube, K., Hitman, G. A., Fenton, N. E., & Kyrimi, E. (2020). Bayesian networks in healthcare: Distribution by medical condition. Artificial intelligence in medicine, 107, 101912.
    [CrossRef]   [Google Scholar]
  19. Yet, B., Perkins, Z. B., Rasmussen, T. E., Tai, N. R., & Marsh, D. W. R. (2014). Combining data and meta-analysis to build Bayesian networks for clinical decision support. Journal of biomedical informatics, 52, 373-385.
    [CrossRef]   [Google Scholar]
  20. Jalal, H., Trikalinos, T. A., & Alarid-Escudero, F. (2021). BayCANN: streamlining Bayesian calibration with artificial neural network metamodeling. Frontiers in Physiology, 12, 662314.
    [CrossRef]   [Google Scholar]
  21. Velichko, A. (2021). A method for medical data analysis using the LogNNet for clinical decision support systems and edge computing in healthcare. Sensors, 21(18), 6209.
    [CrossRef]   [Google Scholar]
  22. Kiser, A. C., Schliep, K. C., Hernandez, E. J., Peterson, C. M., Yandell, M., & Eilbeck, K. (2024). An artificial intelligence approach for investigating multifactorial pain-related features of endometriosis. Plos one, 19(2), e0297998.
    [CrossRef]   [Google Scholar]
  23. Lamb, L. E., Janicki, J. J., Bartolone, S. N., Ward, E. P., Abraham, N., Laudano, M., ... & Chancellor, M. B. (2024). Risk classification for interstitial cystitis/bladder pain syndrome using machine learning based predictions. Urology, 189, 19-26.
    [CrossRef]   [Google Scholar]
  24. Li, X., Hao, X., Liu, J. H., & Huang, J. P. (2024). Efficacy of non-pharmacological interventions for primary dysmenorrhoea: a systematic review and Bayesian network meta-analysis. BMJ Evidence-Based Medicine, 29(3), 162-170.
    [CrossRef]   [Google Scholar]
  25. Baroncini, A., Maffulli, N., Schäfer, L., Manocchio, N., Bossa, M., Foti, C., ... & Migliorini, F. (2024). Physiotherapeutic and non-conventional approaches in patients with chronic low-back pain: a level I Bayesian network meta-analysis. Scientific reports, 14(1), 11546.
    [CrossRef]   [Google Scholar]
  26. Migliorini, F., Betsch, M., Maffulli, N., Schäfer, L., Hildebrand, F., Kubach, J., & Pasurka, M. (2024). Rate of revision and wear penetration in different polyethylene liner compositions in total hip arthroplasty: a Bayesian network meta-analysis. Scientific reports, 14(1), 21162.
    [CrossRef]   [Google Scholar]
  27. Sun, D., Zhang, X., Xu, Q., Li, Y., Zhang, Q., Wang, D., ... & Li, A. (2024). Duhamel and transanal endorectal pull-throughs for Hirschsprung disease: a Bayesian network meta-analysis. BMC surgery, 24(1), 132.
    [CrossRef]   [Google Scholar]
  28. Yang, Y., Gu, W., Xu, S., Wang, S., Shi, H., Zhang, L., ... & Du, Y. (2024). Treatment for peripheral nerve injury: a protocol for a systematic review and Bayesian network meta-analysis. BMJ open, 14(12), e090497.
    [CrossRef]   [Google Scholar]
  29. Kang, J., Ahn, K., Oh, J., Lee, T., Hwang, S., Uh, Y., & Choi, S. J. (2025). Identification of Endometriosis Pathophysiologic-Related Genes Based on Meta-Analysis and Bayesian Approach. International Journal of Molecular Sciences, 26(1), 424.
    [CrossRef]   [Google Scholar]
  30. Sumbul, Sultana, A., Heyat, M. B. B., Rahman, K., Akhtar, F., Parveen, S., ... & Malik, A. (2024). Efficacy and classification of Sesamum indicum linn seeds with Rosa damascena mill oil in uncomplicated pelvic inflammatory disease using machine learning. Frontiers in Chemistry, 12, 1361980.
    [CrossRef]   [Google Scholar]
  31. Wang, Q., Sun, J., Liu, X., Ping, Y., Feng, C., Liu, F., & Feng, X. (2024). Comparison of risk prediction models for the progression of pelvic inflammatory disease patients to sepsis: Cox regression model and machine learning model. Heliyon, 10(1).
    [CrossRef]   [Google Scholar]
  32. Yu, H., Zhao, H., Liu, D., Dong, Y., Nai, M., Song, Y., ... & Li, X. (2024). Prediction of myofascial pelvic pain syndrome based on random forest model. Heliyon, 10(11).
    [CrossRef]   [Google Scholar]
  33. Tokuc, E., Eksi, M., Kayar, R., Demir, S., Topaktas, R., Bastug, Y., ... & Ozturk, M. (2024). Inflammation indexes and machine-learning algorithm in predicting urethroplasty success. Investigative and Clinical Urology, 65(3), 240.
    [CrossRef]   [Google Scholar]
  34. Santos, L. L. A., de Azevedo, M. C., Shimamura, L. K., Nogueira, A. A., Candido-dos-Reis, F. J., Schor, E., ... & Poli-Neto, O. B. (2024). Machine learning as a clinical decision support tool for diagnosing superficial peritoneal endometriosis in women with dysmenorrhea and acyclic pelvic pain. Medical Research Archives, 12(12).
    [CrossRef]   [Google Scholar]
  35. Zhao, N., Hao, T., Zhang, F., Ni, Q., Zhu, D., Wang, Y., ... & Mi, X. (2024). Application of machine learning techniques in the diagnosis of endometriosis. BMC Women's Health, 24(1), 491.
    [CrossRef]   [Google Scholar]
  36. Okui, N. (2024). Unsupervised machine learning reveals a vulvodynia-predominant subtype in bladder pain syndrome/interstitial cystitis. Cureus, 16(6).
    [CrossRef]   [Google Scholar]
  37. Liu, B., Wang, Q., Dong, H., Zhang, J., Pu, X., & Yu, J. (2025). Integrative bioinformatics and experimental approaches reveal NFKBIZ as a key regulator of inflammatory factors and chemokines in pelvic inflammatory disease progression. Gene Reports, 39, 102194.
    [CrossRef]   [Google Scholar]
  38. Zhou, T., Zhu, C., Zhang, W., Wu, Q., Deng, M., Jiang, Z., ... & Zou, C. (2025). Identification and validation of immune and diagnostic biomarkers for interstitial cystitis/painful bladder syndrome by integrating bioinformatics and machine-learning. Frontiers in Immunology, 16, 1511529.
    [CrossRef]   [Google Scholar]
  39. Kumar, S., Veer, K., & Kumar, S. (2024). Development of a novel wrist pulse system for early diagnosis of pathogenic bacterial infections using optimized feature selection with machine learning approaches. Biomedical Signal Processing and Control, 87, 105503.
    [CrossRef]   [Google Scholar]
  40. Xiang, Y., Yang, F., Yuan, F., Gong, Y., Li, J., Wang, X., ... & Yang, B. (2025). Development and Validation of a Multimodal Machine Learning Model for Diagnosing and Assessing Risk of Crohn's Disease in Patients With Perianal Fistula. Alimentary Pharmacology & Therapeutics, 61(5), 824-834.
    [CrossRef]   [Google Scholar]
  41. Verma, V., & Singh, Y. (2023, February). Improved Analysis of Inflammatory Diseases in Women using Artificial Intelligence based Approach. In 2023 IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS) (pp. 1-7). IEEE.
    [CrossRef]   [Google Scholar]
  42. Chandramohan, A., Bhat, T. A., John, R., & Simon, B. (2020). Multimodality imaging review of complex pelvic lesions in female pelvis. The British Journal of Radiology, 93(1116), 20200489.
    [CrossRef]   [Google Scholar]
  43. Saraei, M., Lalinia, M., & Lee, E. J. (2025). Deep Learning-Based Medical Object Detection: A Survey. IEEE Access, 13, 53019-53038.
    [CrossRef]   [Google Scholar]
  44. Amann, J., Blasimme, A., Vayena, E., Frey, D., Madai, V. I., & Precise4Q Consortium. (2020). Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC medical informatics and decision making, 20(1), 310.
    [CrossRef]   [Google Scholar]
  45. Javed, H., El-Sappagh, S., & Abuhmed, T. (2024). Robustness in deep learning models for medical diagnostics: security and adversarial challenges towards robust AI applications. Artificial Intelligence Review, 58(1), 12.
    [CrossRef]   [Google Scholar]
  46. Zhang, J., & Zhang, Z. M. (2023). Ethics and governance of trustworthy medical artificial intelligence. BMC medical informatics and decision making, 23(1), 7.
    [CrossRef]   [Google Scholar]
  47. Ameen, S., Wong, M. C., Yee, K. C., & Turner, P. (2022). AI and clinical decision making: the limitations and risks of computational reductionism in bowel cancer screening. Applied Sciences, 12(7), 3341.
    [CrossRef]   [Google Scholar]
  48. Taqa, Amer. (2025). AI-Assisted Diagnosis in Healthcare: Opportunities and Limitations.
    [Google Scholar]
  49. Hulsen, T. (2023). Explainable artificial intelligence (XAI): concepts and challenges in healthcare. Ai, 4(3), 652-666.
    [CrossRef]   [Google Scholar]
  50. Marey, A., Arjmand, P., Alerab, A. D. S., Eslami, M. J., Saad, A. M., Sanchez, N., & Umair, M. (2024). Explainability, transparency and black box challenges of AI in radiology: impact on patient care in cardiovascular radiology. Egyptian Journal of Radiology and Nuclear Medicine, 55(1), 183.
    [CrossRef]   [Google Scholar]
  51. Marey, A., Arjmand, P., Alerab, A. D. S., Eslami, M. J., Saad, A. M., Sanchez, N., & Umair, M. (2024). Explainability, transparency and black box challenges of AI in radiology: impact on patient care in cardiovascular radiology. Egyptian Journal of Radiology and Nuclear Medicine, 55(1), 183.
    [CrossRef]   [Google Scholar]
  52. Lewis, A. E., Weiskopf, N., Abrams, Z. B., Foraker, R., Lai, A. M., Payne, P. R., & Gupta, A. (2023). Electronic health record data quality assessment and tools: a systematic review. Journal of the American Medical Informatics Association, 30(10), 1730-1740.
    [CrossRef]   [Google Scholar]
  53. Chen, F., Wang, L., Hong, J., Jiang, J., & Zhou, L. (2024). Unmasking bias in artificial intelligence: a systematic review of bias detection and mitigation strategies in electronic health record-based models. Journal of the American Medical Informatics Association, 31(5), 1172-1183.
    [CrossRef]   [Google Scholar]
  54. Al-Sahab, B., Leviton, A., Loddenkemper, T., Paneth, N., & Zhang, B. (2024). Biases in electronic health records data for generating real-world evidence: an overview. Journal of healthcare informatics research, 8(1), 121-139.
    [CrossRef]   [Google Scholar]
  55. López, D. M., Rico-Olarte, C., Blobel, B., & Hullin, C. (2022). Challenges and solutions for transforming health ecosystems in low-and middle-income countries through artificial intelligence. Frontiers in Medicine, 9, 958097.
    [CrossRef]   [Google Scholar]
  56. Nair, M., Svedberg, P., Larsson, I., & Nygren, J. M. (2024). A comprehensive overview of barriers and strategies for AI implementation in healthcare: Mixed-method design. PLoS One, 19(8), e0305949.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Yang, J., & Hong, Q. (2025). Artificial Intelligence in Chronic Pelvic Inflammatory Disease Management: A Comprehensive Review of Integrated Diagnostic Frameworks and Adaptive Therapeutic Systems. ICCK Transactions on Intelligent Systematics, 2(3), 169–189. https://doi.org/10.62762/TIS.2025.511235

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 54
PDF Downloads: 28

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
Institute of Central Computation and Knowledge (ICCK) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ICCK Transactions on Intelligent Systematics

ICCK Transactions on Intelligent Systematics

ISSN: 3068-5079 (Online) | ISSN: 3069-003X (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/