-
CiteScore
-
Impact Factor
Volume 1, Issue 3, ICCK Journal of Applied Mathematics
Volume 1, Issue 3, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Journal of Applied Mathematics, Volume 1, Issue 3, 2025: 97-119

Open Access | Research Article | 26 October 2025
Magnetohydrodynamic Flow and Heat Transfer of Boger Tri-Hybrid Nanofluid over a Porous Disk with Cattaneo-Christov Heat Flux Theory Using Artificial Neural Network Framework
1 Department of Physical and Numerical Sciences, Qurtuba University of Science and Information Technology, Peshawar, KP 25000, Pakistan
* Corresponding Author: Sohail Rehman, [email protected]
Received: 23 August 2025, Accepted: 29 September 2025, Published: 26 October 2025  
Abstract
This study investigates the magnetohydrodynamic (MHD) flow of Boger tri-hybrid nanofluid (tri-HNF) through a stretching disk. A novel machine learning technique, specifically the Levenberg--Marquardt (LM) scheme under a backpropagated artificial neural network (ANN), is used to predict the flow dynamics with heat and mass transfer. The Cattaneo-Christov mass and heat fluxes model, permeable media, and viscous dissipation are considered. The well-known Brinkman-Hamilton and Crosser model is used to describe thermal conductivity and viscosity models. The computational solution to the current problem has been obtained using the Bvp4c approach, which is based on finite differences. In order to examine the numerical solutions and anticipated outcomes, LM-BNN uses a numerical dataset that is split into three categories: 15% for testing, 70% for training, and 15% for validation. Regression analysis, surface stresses, error histogram, correlation index, heat and mass transfer, and mean squared error-based fitness curves, which range from $10^{- 10}$ to $10^{- 8}$ are used to validate the consistency and efficacy of LM-BNN. The findings suggest that the velocity profile declines with the magnetic and relaxation time ratio parameter. The temperature and concentration decrease with thermal and solutal relaxation parameters. The heat and mass transfer rates are significant for solvent viscosity and nanomaterials load.

Graphical Abstract
Magnetohydrodynamic Flow and Heat Transfer of Boger Tri-Hybrid Nanofluid over a Porous Disk with Cattaneo-Christov Heat Flux Theory Using Artificial Neural Network Framework

Keywords
boger fluid
modified fourier's and fick's laws
MHD
permeable medium
artificial intelligence
soft computing

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The author declares no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. James, D. F. (2009). Boger fluids. Annual Review of Fluid Mechanics, 41(1), 129-142.
    [CrossRef]   [Google Scholar]
  2. Jebali, M., Rehman, S., Bouzidi, M., Shamshad, M., & Nasr, S. (2025). Optimization of magneto-thin film bioconvection flow of bi-viscosity Bingham fluid with swarm microorganism using machine learning-integrated numerical simulations. Physics of Fluids, 37(9).
    [CrossRef]   [Google Scholar]
  3. Jackson, K. P., Walters, K., & Williams, R. W. (1984). A rheometrical study of boger fluids. Journal of Non-Newtonian Fluid Mechanics, 14, 173-188.
    [CrossRef]   [Google Scholar]
  4. Nasr, S., Rehman, S., Znaidia, S., & Ahmed, W. (2025). Boundary layer flow and heat-mass transfer of shear-thinning nanofluid past a thin needle: Electroperiodic magnetic field and thermo-diffusion effects. Nuclear Engineering and Technology, 57(5), 103354.
    [CrossRef]   [Google Scholar]
  5. James, D. F., & Roos, C. A. (2021). Pressure drop of a Boger fluid in a converging channel. Journal of Non-Newtonian Fluid Mechanics, 293, 104557.
    [CrossRef]   [Google Scholar]
  6. López-Aguilar, J. E., Tamaddon-Jahromi, H. R., Webster, M. F., & Walters, K. (2016). Numerical vs experimental pressure drops for Boger fluids in sharp-corner contraction flow. Physics of Fluids, 28(10).
    [CrossRef]   [Google Scholar]
  7. Choujaa, M. H., Riahi, M., & Aniss, S. (2025). Inertio-elastic parametric resonance between inertia-dominated and elasticity-dominated Taylor vortex flows in Boger fluids confined between two co-oscillating cylinders. Journal of Non-Newtonian Fluid Mechanics, 338, 105398.
    [CrossRef]   [Google Scholar]
  8. Raza, Q., Wang, X., Mushtaq, T., Ali, B., & Shah, N. A. (2025). Finite element analysis of nanolayer thermal conductivity in Boger nanofluid flow with radius of nanoparticle and motile microorganisms under time-dependent conditions. Chaos, Solitons & Fractals, 194, 116205.
    [CrossRef]   [Google Scholar]
  9. Raza, Q., Wang, X., & Ali, B. (2025). Influence of viscosity and thermal conductivity in Boger nanofluid flow through porous disk: finite difference analysis. Journal of Thermal Analysis and Calorimetry, 150(1), 451-477.
    [CrossRef]   [Google Scholar]
  10. Ali, B., Sharif, H., Habib, D., Ghazwani, H. A., Saman, I., & Yang, H. (2024). Significance of tri-hybrid nanoparticles in thermal management subject to magnetized squeezing flow of a Boger-micropolar nanofluid between concentring disks. Journal of Molecular Liquids, 397, 124141.
    [CrossRef]   [Google Scholar]
  11. Sheykhian, M. K., Kayhani, M. H., Norouzi, M., Kim, M., & Kim, K. C. (2023). An experimental study on the impact of Boger and Newtonian droplets on spherical surfaces. Physics of Fluids, 35(8).
    [CrossRef]   [Google Scholar]
  12. Labbé, R., Pinton, J. F., & Fauve, S. (1996). Study of the von Kármán flow between coaxial corotating disks. Physics of Fluids, 8(4), 914-922.
    [CrossRef]   [Google Scholar]
  13. Zandbergen, P. J., & Dijkstra, D. (1987). Von Kármán swirling flows. Annual review of fluid mechanics, 19, 465-491.
    [CrossRef]   [Google Scholar]
  14. Turkyilmazoglu, M. (2015). Bödewadt flow and heat transfer over a stretching stationary disk. International Journal of Mechanical Sciences, 90, 246-250.
    [CrossRef]   [Google Scholar]
  15. Chu, Y. M., Al-Khaled, K., Khan, N., Khan, M. I., Khan, S. U., Hashmi, M. S., ... & Tlili, I. (2021). Study of Buongiorno’s nanofluid model for flow due to stretching disks in presence of gyrotactic microorganisms. Ain Shams Engineering Journal, 12(4), 3975-3985.
    [CrossRef]   [Google Scholar]
  16. Khan, U., Bilal, S., Zaib, A., Makinde, O. D., & Wakif, A. (2022). Numerical simulation of a nonlinear coupled differential system describing a convective flow of Casson gold–blood nanofluid through a stretched rotating rigid disk in the presence of Lorentz forces and nonlinear thermal radiation. Numerical Methods for Partial Differential Equations, 38(3), 308-328.
    [CrossRef]   [Google Scholar]
  17. Sharma, K., Vijay, N., Mabood, F., & Badruddin, I. A. (2022). Numerical simulation of heat and mass transfer in magnetic nanofluid flow by a rotating disk with variable fluid properties. International Communications in Heat and Mass Transfer, 133, 105977.
    [CrossRef]   [Google Scholar]
  18. Rehman, S. (2025). Boundary layer slip flow and heat-mass transfer of radiated water based nanofluid over a permeable disk: Darcy-Forchheimer model and activation energy. Chaos, Solitons & Fractals, 192, 116097.
    [CrossRef]   [Google Scholar]
  19. Khan, M. I., & Alzahrani, F. (2020). Transportation of heat through Cattaneo-Christov heat flux model in non-Newtonian fluid subject to internal resistance of particles. Applied Mathematics and Mechanics, 41(8), 1157-1166.
    [CrossRef]   [Google Scholar]
  20. Fourier, J. B. J. (1888). Théorie analytique de la chaleur. Gauthier-Villars et fils.
    [CrossRef]   [Google Scholar]
  21. Cattaneo, C. (1948). Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena, 3, 83-101.
    [CrossRef]   [Google Scholar]
  22. Christov, C. I. (2009). On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mechanics research communications, 36(4), 481-486.
    [CrossRef]   [Google Scholar]
  23. MN, P., SK, N., & Vajravelu, K. (2025). Heat and mass transfer in Casson fluid flow with tri-hybrid nanoparticles on curved surface: A biomedical relevance. Physics of Fluids, 37(8).
    [CrossRef]   [Google Scholar]
  24. Deb, P., & Layek, G. C. (2025). Multistability and transition to chaos in non-Fourier convection under cross-flow forcing. Physics of Fluids, 37(9).
    [CrossRef]   [Google Scholar]
  25. Saravanan, S., & Muthumeena, R. (2025). Onset of thermal turbulence in Cattaneo-type convection inside a heater mounted enclosure. Physics of Fluids, 37(7).
    [CrossRef]   [Google Scholar]
  26. Jia, B., & Jian, Y. (2025). Role of the Maxwell–Cattaneo effect on convection instability in a vertical Brinkman porous layer. Physics of Fluids, 37(4).
    [CrossRef]   [Google Scholar]
  27. Shah, F., Zhang, D., & Linlin, G. (2024). Non-similar analysis of two-phase hybrid nano-fluid flow with Cattaneo-Christov heat flux model: a computational study. Engineering Applications of Computational Fluid Mechanics, 18(1), 2380800.
    [CrossRef]   [Google Scholar]
  28. Choi, S. U. (1995, November). Enhancing thermal conductivity of fluids with nanoparticles. In ASME international mechanical engineering congress and exposition (Vol. 17421, pp. 99-105). American Society of Mechanical Engineers.
    [CrossRef]   [Google Scholar]
  29. Khan, S. A., Razzaq, A., Hayat, T., & Razaq, A. (2025). Artificial neural network analysis for entropy optimized flow of Jeffrey nanofluid invoking Cattaneo-Christov theory. Energy, 137998.
    [CrossRef]   [Google Scholar]
  30. Afridi, M. I., Almohsen, B., Habib, S., Khan, Z., & Razzaq, R. (2025). Artificial neural network analysis of MHD Maxwell nanofluid flow over a porous medium in presence of Joule heating and nonlinear radiation effects. Chaos, Solitons & Fractals, 192, 116072.
    [CrossRef]   [Google Scholar]
  31. Yasmin, H., Bossly, R., Alduais, F. S., Al-Bossly, A., & Saeed, A. (2025). Thermally radiative water-based hybrid nanofluid with nanoparticles and gyrotactic microorganisms past a stretching surface with convective conditions and porous media. Case Studies in Thermal Engineering, 65, 105644.
    [CrossRef]   [Google Scholar]
  32. Adogbeji, V. O., Atofarati, E. O., Govinder, K., Sharifpur, M., & Meyer, J. P. (2025). Tri-hybrid nanofluids for thermal applications: stability, magneto-hydrodynamics, and machine learning prediction. Multiscale and Multidisciplinary Modeling, Experiments and Design, 8(9), 411.
    [CrossRef]   [Google Scholar]
  33. Anjum, M. W., Saqib, S. U., Shih, Y. T., Jaghdam, I. H., Becheikh, N., & Kolsi, L. (2025). An Intelligent Soft Computing Model for Predicting the Thermal Behavior of Blood-Based Trihybrid Nanofluids Flow in Biomedical Drug Delivery Applications. Case Studies in Thermal Engineering, 106742.
    [CrossRef]   [Google Scholar]
  34. Rauf, A., Faisal, Hussain, F., & Shah, N. A. (2025). A numerical study of Carreau–Yasuda tri-hybrid nanofluid over a convective heated surface near a stagnation point. Journal of Thermal Analysis and Calorimetry, 1-12.
    [CrossRef]   [Google Scholar]
  35. Algehyne, E. A., Alrihieli, H. F., Bilal, M., Saeed, A., & Weera, W. (2022). Numerical approach toward ternary hybrid nanofluid flow using variable diffusion and non-Fourier’s concept. ACS omega, 7(33), 29380-29390.
    [CrossRef]   [Google Scholar]
  36. Shah, T. R., Koten, H., & Ali, H. M. (2020). Performance effecting parameters of hybrid nanofluids. In Hybrid nanofluids for convection heat transfer (pp. 179-213). Academic Press.
    [CrossRef]   [Google Scholar]
  37. Anwar, T., Kumam, P., Almutairi, K. S., & Watthayu, W. (2025). Thermophysical dynamics of mineral oil-based hybrid nanofluids under multiple flow conditions and radiation effects; Individual, synergistic, and shape impacts analysis. Journal of Radiation Research and Applied Sciences, 18(4), 101748.
    [CrossRef]   [Google Scholar]
  38. Ragulkumar, E., & Anwar, T. (2025). Heat and mass transfer of a 2D monolayer hybrid nanofluid over a vertical cone subject to magnetic, porosity, and chemical reaction impacts. International Journal of Thermofluids, 101387.
    [CrossRef]   [Google Scholar]
  39. Rafique, K., Mahmood, Z., Popa, I. L., Anwar, T., & Kumar, A. (2025). Double diffusive convection in non-newtonian fluid flow with quadratic radiation and variable viscosity: Heat generation effects in lower stagnation point of solid sphere. Results in Engineering, 27, 106820.
    [CrossRef]   [Google Scholar]
  40. Mukherjee, I., & Routroy, S. (2012). Comparing the performance of neural networks developed by using Levenberg–Marquardt and Quasi-Newton with the gradient descent algorithm for modelling a multiple response grinding process. Expert Systems with Applications, 39(3), 2397-2407.
    [CrossRef]   [Google Scholar]
  41. Aljohani, J. L., Alaidarous, E. S., Raja, M. A. Z., Shoaib, M., & Alhothuali, M. S. (2021). Intelligent computing through neural networks for numerical treatment of non-Newtonian wire coating analysis model. Scientific Reports, 11(1), 9072.
    [CrossRef]   [Google Scholar]
  42. Raja, M. A. Z., Mehmood, A., ur Rehman, A., Khan, A., & Zameer, A. (2018). Bio-inspired computational heuristics for Sisko fluid flow and heat transfer models. Applied Soft Computing, 71, 622-648.
    [CrossRef]   [Google Scholar]
  43. Housiadas, K. D., & Tsangaris, C. (2023). Channel flow with variable geometry and Navier slip at the walls using high-order lubrication theory. European Journal of Mechanics-B/Fluids, 98, 194-207.
    [CrossRef]   [Google Scholar]
  44. Khan, W. A., Khan, M., Alshomrani, A. S., & Ahmad, L. (2016). Numerical investigation of generalized Fourier's and Fick's laws for Sisko fluid flow. Journal of Molecular Liquids, 224, 1016-1021.
    [CrossRef]   [Google Scholar]
  45. Sousa, P. C., Coelho, P. M., Oliveira, M. S. N., & Alves, M. A. (2009). Three-dimensional flow of Newtonian and Boger fluids in square–square contractions. Journal of non-newtonian fluid mechanics, 160(2-3), 122-139.
    [CrossRef]   [Google Scholar]
  46. Abbas, M., Khan, N., Hashmi, M. S., Tawfiq, F. M., Inc, M., & Raghunatha, K. R. (2024). Numerical simulation of chemical reactive flow of Boger fluid over a sheet with heat source and local thermal non-equilibrium conditions. Case Studies in Thermal Engineering, 59, 104498.
    [CrossRef]   [Google Scholar]
  47. Madkhali, H. A., Haneef, M., El-Shafay, A. S., Alharbi, S. O., & Nawaz, M. (2022). Mixed convective transport in Maxwell hybrid nano-fluid under generalized Fourier and Fick laws. International Communications in Heat and Mass Transfer, 130, 105714.
    [CrossRef]   [Google Scholar]
  48. Waqas, M., Naz, S., Hayat, T., Shehzad, S. A., & Alsaedi, A. (2019). Effectiveness of improved Fourier-Fick laws in a stratified non-Newtonian fluid with variable fluid characteristics. International Journal of Numerical Methods for Heat & Fluid Flow, 29(6), 2128-2145.
    [CrossRef]   [Google Scholar]
  49. Muzammal, M., Farooq, M., Moussa, S. B., & NASR, S. (2024). Melting heat transfer of a quadratic stratified Jeffrey nanofluid flow with inclined magnetic field and thermophoresis. Alexandria Engineering Journal, 103, 158-168.
    [CrossRef]   [Google Scholar]
  50. Madhu, J., Vinutha, K., Kumar, R. N., Gowda, R. P., Prasannakumara, B. C., Alqahtani, A. S., & Malik, M. Y. (2024). Impact of solid-liquid interfacial layer in the nanofluid flow between stretching stationary disk and a rotating cone. Tribology International, 192, 109187.
    [CrossRef]   [Google Scholar]
  51. Rafique, K., Mahmood, Z., Khan, U., Eldin, S. M., Oreijah, M., Guedri, K., & Khalifa, H. A. E. W. (2023). Investigation of thermal stratification with velocity slip and variable viscosity on MHD flow of Al2O3- Cu- TiO2/H2O nanofluid over disk. Case Studies in Thermal Engineering, 49, 103292.
    [CrossRef]   [Google Scholar]
  52. Rauf, A., Shehzad, S. A., Kiran, R., Mustafa, F., Ali, I., Khan, S., & Siddiq, M. K. (2024). Regression and numerical treatment of micropolar fluid induced by the melting stretchable disk. Case Studies in Thermal Engineering, 56, 104236.
    [CrossRef]   [Google Scholar]
  53. Turkyilmazoglu, M. (2012). Three dimensional MHD stagnation flow due to a stretchable rotating disk. International Journal of Heat and Mass Transfer, 55(23-24), 6959-6965.
    [CrossRef]   [Google Scholar]
  54. Khlifi, M. A., Mahroogi, F., & Tlili, I. (2025). Thermal Insight to Magnetized Tri Hybrid Nanofluid (CuO-TiO2-SiO2)/blood with Nonlinear Radiated Effects: Applications to Hyperthermia Cancer Treatment. Case Studies in Thermal Engineering, 106235.
    [CrossRef]   [Google Scholar]
  55. Abu Bakar, S., Wahid, N. S., Md Arifin, N., & Pop, I. (2025). Optimization of heat transfer on Jeffrey ternary nanofluid flow with slip conditions and heat generation by response surface methodology. Multiscale and Multidisciplinary Modeling, Experiments and Design, 8(2), 150.
    [CrossRef]   [Google Scholar]
  56. Abbas, M., Khan, N., Hashmi, M. S., Salleh, Z., Aly, A. A., Rezapour, S., & Inc, M. (2024). Consequence of Cattaneo-Christov heat and mass flux models on bioconvective flow of dusty hybrid nanofluid over a Riga plate in the presence of gyrotactic microorganisms and Stephan blowing impacts. Case Studies in Thermal Engineering, 61, 105061.
    [CrossRef]   [Google Scholar]
  57. Mahmood, Z., Eldin, S. M., Rafique, K., & Khan, U. (2023). Numerical analysis of MHD tri-hybrid nanofluid over a nonlinear stretching/shrinking sheet with heat generation/absorption and slip conditions. Alexandria Engineering Journal, 76, 799-819.
    [CrossRef]   [Google Scholar]
  58. Ali, B., Jubair, S., Aluraikan, A., Abd El-Rahman, M., Eldin, S. M., & Khalifa, H. A. E. W. (2023). Numerical investigation of heat source induced thermal slip effect on trihybrid nanofluid flow over a stretching surface. Results in Engineering, 20, 101536.
    [CrossRef]   [Google Scholar]
  59. Khashi'ie, N. S., Arifin, N. M., & Pop, I. (2021). Unsteady axisymmetric flow and heat transfer of a hybrid nanofluid over a permeable stretching/shrinking disc. International Journal of Numerical Methods for Heat & Fluid Flow, 31(6), 2005-2021.
    [CrossRef]   [Google Scholar]
  60. Rafique, K., Mahmood, Z., Adnan, Muhammad, T., Alqahtani, H., & Shaaban, A. A. (2025). Dynamics of shape factor with Joule heating and thermal stratification on magnetohydrodynamic A l 2 O 3-C u-T i O 2/H 2 O nanofluid of stretching disk: an irreversibility analysis. Journal of Thermal Analysis and Calorimetry, 150(4), 2757-2780.
    [CrossRef]   [Google Scholar]
  61. Azhar, E., Maraj, E. N., Afaq, H., Jamal, M., & Iqbal, Z. (2024). Application of activation energy and Joule heating with variable viscosity on MHD flow of trihybrid nanofluid over a disk. International Communications in Heat and Mass Transfer, 155, 107573.
    [CrossRef]   [Google Scholar]
  62. Iqbal, J., Abbasi, F. M., & Ali, I. (2024). Heat transfer analysis for magnetohydrodynamic peristalsis of Reiner–Philippoff fluid: Application of an artificial neural network. Physics of Fluids, 36(4).
    [CrossRef]   [Google Scholar]
  63. Shafiq, A., Çolak, A. B., & Sindhu, T. N. (2023). Modeling of Soret and Dufour’s convective heat transfer in nanofluid flow through a moving needle with artificial neural network. Arabian Journal for Science and Engineering, 48(3), 2807-2820.
    [CrossRef]   [Google Scholar]
  64. Agatonovic-Kustrin, S., & Beresford, R. (2000). Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of pharmaceutical and biomedical analysis, 22(5), 717-727.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Rehman, S. (2025). Magnetohydrodynamic Flow and Heat Transfer of Boger Tri-Hybrid Nanofluid over a Porous Disk with Cattaneo-Christov Heat Flux Theory Using Artificial Neural Network Framework. ICCK Journal of Applied Mathematics, 1(3), 97–119. https://doi.org/10.62762/JAM.2025.640044

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 114
PDF Downloads: 42

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
ICCK Journal of Applied Mathematics

ICCK Journal of Applied Mathematics

ISSN: 3068-5656 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/