-
CiteScore
-
Impact Factor
Volume 1, Issue 3, ICCK Journal of Applied Mathematics
Volume 1, Issue 3, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Journal of Applied Mathematics, Volume 1, Issue 3, 2025: 120-128

Open Access | Research Article | 29 October 2025
Electrostatic Freak Waves in Pair-Ion and Pair-Ion-Electron Plasmas
1 Department of Mathematics, Riphah International University, Islamabad, Pakistan
2 Department of Physics, Riphah International University, Islamabad, Pakistan
* Corresponding Author: Muhammad Waqar Ahmed, [email protected]
Received: 13 August 2025, Accepted: 29 September 2025, Published: 29 October 2025  
Abstract
This work investigates the formation and dynamics of electrostatic freak waves in pair-ion (PI) and pair-ion--electron (PIE) plasmas. The analysis begins with the derivation of the Korteweg--de Vries (KdV) equations for both plasma configurations, from which the corresponding nonlinear and dispersive coefficients are obtained. By employing the wave superposition principle, the KdV equations are systematically reduced to the nonlinear Schrödinger equation (NLSE), enabling the exploration of modulation instability and rogue wave generation. Analytical solutions of the NLSE are utilized to construct parametric plots that elucidate the evolution of freak waves in PI and PIE plasmas. Comparative analysis reveals pronounced differences in the amplitude, localization, and structural properties of the freak waves in the two plasma environments, highlighting the critical role of electron contributions in shaping nonlinear wave phenomena.

Graphical Abstract
Electrostatic Freak Waves in Pair-Ion and Pair-Ion-Electron Plasmas

Keywords
wave phenomena
freak waves
Pair-Ion plasmas
Pair-Ion--Electron plasmas
NLS equation
reductive perturbation method

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Chalikov, D. (2009). Freak waves: Their occurrence and probability. Physics of Fluids, 21(7).
    [CrossRef]   [Google Scholar]
  2. Kharif, C., Pelinovsky, E., & Slunyaev, A. (2008). Rogue waves in the ocean. Springer Science & Business Media.
    [Google Scholar]
  3. Yim, S. C., Osborne, A. R., & Mohtat, A. (2017, June). Nonlinear ocean wave models and laboratory simulation of high seastates and rogue waves. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 57748, p. V07BT06A056). American Society of Mechanical Engineers.
    [CrossRef]   [Google Scholar]
  4. Liu, W. (2017). High-order rogue waves of the Benjamin–Ono equation and the nonlocal nonlinear Schrödinger equation. Modern Physics Letters B, 31(29), 1750269.
    [CrossRef]   [Google Scholar]
  5. Weilnau, C., Ahles, M., Petter, J., Träger, D., Schröder, J., & Denz, C. (2002). Spatial optical (2+ 1)‐dimensional scalar‐and vector‐solitons in saturable nonlinear media. Annalen der Physik, 514(8), 573-629.
    [CrossRef]   [Google Scholar]
  6. Sethi, P., Singh, K., & Saini, N. S. (2019). Magnetoacoustic Nonlinear Solitary and Freak Waves in Pair-Ion Plasma. Zeitschrift für Naturforschung A, 74(9), 777-786.
    [CrossRef]   [Google Scholar]
  7. Sikdar, A., Adak, A., Ghosh, S., & Khan, M. (2018). Electrostatic wave modulation in collisional pair-ion plasmas. Physics of Plasmas, 25(5).
    [CrossRef]   [Google Scholar]
  8. Noman, A. A., Islam, M. K., Hassan, M., Banik, S., Chowdhury, N. A., Mannan, A., & Mamun, A. A. (2021). Dust-ion-acoustic rogue waves in a dusty plasma having super-thermal electrons. Gases, 1(2), 106-116.
    [CrossRef]   [Google Scholar]
  9. Hassan, M., Rahman, M. H., Chowdhury, N. A., Mannan, A., & Mamun, A. A. (2019). Ion-acoustic rogue waves in multi-ion plasmas. Communications in Theoretical Physics, 71(8), 1017.
    [CrossRef]   [Google Scholar]
  10. El-Taibany, W. F., Karmakar, P. K., Beshara, A. A., El-Borie, M. A., Gwaily, S. A., & Atteya, A. (2022). Comparison study of the energy and instability of ion-acoustic solitary waves in magnetized electron–positron–ion quantum plasma. Scientific Reports, 12(1), 19078.
    [CrossRef]   [Google Scholar]
  11. Batool, N., Masood, W., Al Huwayz, M., Almuqrin, A. H., & El-Tantawy, S. A. (2025). Interaction of two-dimensional electron-acoustic solitary waves in a cylindrical geometry and their applications in space plasmas. Physics of Plasmas, 32(4).
    [CrossRef]   [Google Scholar]
  12. Lebedev, Y. A. (2015). Microwave discharges at low pressures and peculiarities of the processes in strongly non-uniform plasma. Plasma Sources Science and Technology, 24(5), 053001.
    [CrossRef]   [Google Scholar]
  13. Shisen, R., Shan, W., & Cheng, Z. (2013). Magnetoacoustic solitary waves in pair ion–electron plasmas. Physica Scripta, 87(4), 045503.
    [CrossRef]   [Google Scholar]
  14. Abdelsalam, U. M. (2013). Solitary and freak waves in superthermal plasma with ion jet. Journal of Plasma Physics, 79(3), 287-294.
    [CrossRef]   [Google Scholar]
  15. Ali Shan, S., & El-Tantawy, S. A. (2016). The impact of positrons beam on the propagation of super freak waves in electron-positron-ion plasmas. Physics of Plasmas, 23(7).
    [CrossRef]   [Google Scholar]
  16. Saberian, E. (2022). The invariant ion-acoustic waves in the plasma. Scientific Reports, 12(1), 21766.
    [CrossRef]   [Google Scholar]
  17. Mahmood, S., Ur-Rehman, H., & Saleem, H. (2009). Electrostatic Korteweg-de Vries solitons in pure pair-ion and pair-ion-electron plasmas. Physica Scripta, 80(3), 035502.
    [CrossRef]   [Google Scholar]
  18. Abdelsalam, U. M., Moslem, W. M., Khater, A. H., & Shukla, P. K. (2011). Solitary and freak waves in a dusty plasma with negative ions. Physics of Plasmas, 18(9).
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Khan, M. Y., & Ahmed, M. W. (2025). Electrostatic Freak Waves in Pair-Ion and Pair-Ion-Electron Plasmas. ICCK Journal of Applied Mathematics, 1(3), 120–128. https://doi.org/10.62762/JAM.2025.698605

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 49
PDF Downloads: 15

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
ICCK Journal of Applied Mathematics

ICCK Journal of Applied Mathematics

ISSN: 3068-5656 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/